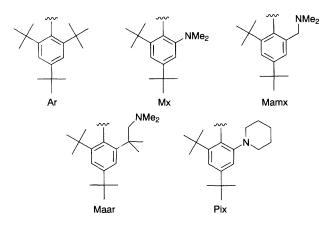
2,4-Di-*tert*-butyl-6-piperidinophenyl as a Sterically and Electronically Stabilizing Group and X-Ray Analysis of the Corresponding Diselenoxophosphorane

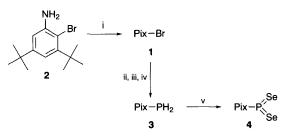

Masaaki Yoshifuji,* Shinya Sangu, Kazunori Kamijo and Kozo Toyota

Department of Chemistry, Faculty of Science, Tohoku University, Aoba, Sendai 980-77, Japan

The 2,4-di-*tert*-butyl-6-(1-piperidino)phenyl group is utilized to stabilize diselenoxophosphorane and the structure determined by X-ray analysis indicates coordination of the nitrogen lone-pair to the P-atom to form a four-membered ring with a remarkably distorted P–C–C bond angle.

Kinetic stabilization using bulky substituents is a useful method for the investigation of low-coordinated phosphorus compounds. Utilizing an extremely bulky 2,4,6-tri-*tert*-butylphenyl group (hereafter abbreviated to Ar) as a sterically protecting auxiliary, we and others have been successful in the preparation of various types of multiply bonded phosphorus compounds such as diphosphenes¹ and dithioxophosphoranes.^{2,3}

On the other hand, thermodynamic stabilization is an alternative technique for stabilization of such compounds. Recently, we have developed some novel stabilizing groups, such as the 2,4-di-*tert*-butyl-6-(dimethylamino)phenyl group (Mx),⁴ the 2,4-di-*tert*-butyl-6-(dimethylaminomethyl)phenyl group (Mamx)⁵ and the 2,4-di-*tert*-butyl-6-[1,1-dimethyl-2-(dimethylamino)ethyl]phenyl group (Maar),⁶ having an electron-donating part within their moieties.


Using these substituents, dithioxophosphoranes as well as selenoxo- and thioxo-phosphines were prepared as stable compounds. In these compounds, the phosphorus-chalcogen bonds are stabilized by both steric protection of the *o-tert*-butyl group and intramolecular coordination of the amino group of the substituents at the *ortho* position.

Now we report a novel stabilizing group, the 2,4-di-*tert*butyl-6-(1-piperidino)phenyl group (Pix = piperidinoxylene derivative), which is expected to have a similar protecting and coordinating ability to the Mx group upon four-membered ring coordination. However, the coordinating ability of the Pix group would be expected to be lower than that of Mamx or Maar, for which five- or six-membered ring coordination is preferred.[†]

The sterically hindered bromobenzene 1 was prepared from 2-bromo-3,5-di-*tert*-butylaniline 2^7 and was converted to the corresponding diselenoxophosphorane 4 *via* an intermediary primary phosphine 3.‡ Similarly, diselenoxophosphoranes with the Maar and Mamx groups were prepared, and are expected to form intramolecular six- and five-membered rings upon coordination. ³¹P NMR chemical shifts of those compounds together with data for 5^8 and 6^{4a} are listed in Table 1. Interaction of nitrogen to phosphorus in the diselenoxophosphoranes is clearly shown by ³¹P NMR spectroscopy. The signals due to the diselenoxophosphoranes 4 and 6 appear at higher field by *ca*. 125 ppm than that of non-coordinated diselenoxophosphorane 5. This up-field shift is ascribable to the coordination of the nitrogen lone pair to the phosphorus atom in this system. The δ_P

values for 4 and 6 lie between those for 5 and MamxPSe₂ reflecting the efficiency in coordination. This tendency is observed for the corresponding dithioxophosphoranes.^{4–6} In the case of 4, such internal coordination is achieved by forming a four-membered ring, while five- and six-membered rings are preferably formed in the corresponding dithioxophosphoranes, 7 and 8, respectively, the structures of which were confirmed by X-ray analysis.^{5,6}

The four-membered ring coordination in 4 was unambiguously established by X-ray crystallographic analysis.§ Fig. 1 depicts the molecular structure of 4.9^{b} The P=Se bond length for

Scheme 1 Reagents and conditions: i, NaBH₄–CH₂(CH₂CHO)₂, 73%; ii, BuⁿLi (1.2 equiv.), Et₂O, 0 °C; iii, PCl₃ (4.0 equiv.), Et₂O, -78 °C; iv, LiAlH₄ (3.0 equiv.), Et₂O; v, Se (4.0 equiv.), 1,8-diazabicyclo[5.4.0]undec-7-ene (*ca.* 1 equiv.), C₆H₆, 25 °C, 20 h, 38% from 1

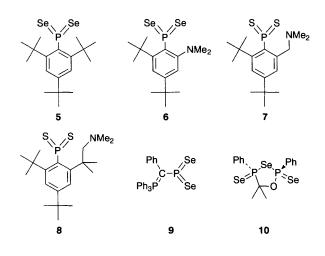
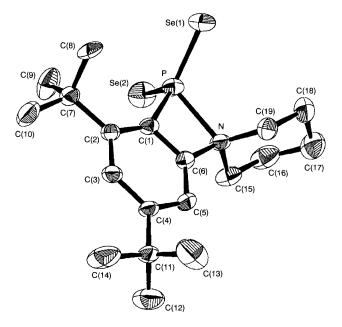



Table 1 31 P NMR data for some diselenoxophosphoranes (81 MHz, CDCl₃)

Diselenoxophosphorane	δ_P	¹ J _{PSe} /Hz
PixPSe ₂ 4	147.7	813.0
$MxPSe_2 6^{a}$	149.6	819.6
MamxPSe ₂	123.6	789.8
MaarPSe ₂	108.7	769.0
$ArPSe_2 5^b$	273.0	854.5

^a Data taken from ref. 4(a). ^b Data taken from ref. 8.

Fig. 1 Molecular structure for **4** showing the atom labelling scheme and thermal ellipsoids at the 50% probability level. Hydrogen atoms and the incorporated benzene molecule are omitted for clarity. Some important bond lengths (Å) and bond and dihedral angles (°): Se(1)–P 2.085(2), Se(2)–P 2.085(2), P–N 2.039(5), P–C(1) 1.814(6), N–C(6) 1.461(7), C(1)–C(2) 1.391(8), C(2)–C(7) 1.521(8), C(1)–C(6) 1.374(8), Se(1)–P–Se(2) 121.80(8), Se(1)–P–C(1) 116.8(2), C(15)–N–C(19) 111.2(5), P–C(1)–C(6) 96.3(4), C(1)–C(2)–C(7) 124.0(5), N–C(6)–C(1) 106.8(5), P–C(1)–C(6)–N 3.1(5)

4 is 2.085(2) Å and is almost identical to those for 9 [2.081(2)] Å and 2.079(2) Å]¹⁰ or **10** [2.081(2) and 2.091(2) Å],¹¹ but much shorter than the P-Se single bond in 10 [2.258(1) Å].¹¹ The bond angle Se–P–Se for $\overline{4}$ is 121.80(8)° and is slightly narrower than that for 9 [124.5(1)°]. The P-N distance for 4 is 2.039(5) Å and is much shorter than the sum of the van der Waals radii, (3.4 Å), but is considerably longer than that for 8 [1.918(9) Å] or 7 [1.921(8) Å]. The most striking feature for 4 is that the bond angle P-C(1)-C(6) is significantly narrowed to 96.3(4)° in forming the four-membered ring, while N-C(6)-C(1) is 106.8(5)°. The corresponding P-C-C bond angles for 7 and 8 are 109.7(8) and $119.3(9)^{\circ}$, respectively. The other bonds in 4 are not so distorted indicating that the P-C bond of sp² configuration is flexible enough to allow distortion of 24°. The atoms C(1), P, N and C(6) are almost coplanar within 0.02 Å and the plane makes an angle of 89.3° with the triangle C(1)Se(1)Se(2). The atom P is 0.292 Å above the triangle plane toward N. The benzene ring C(1)-C(6) is coplanar within 0.01 Å and the atoms P and N are almost on the plane, -0.049 and 0.060 Å below and above, respectively. It is interesting to note that an energy-optimized structure calculated by CAChe-MOPAC¶ using PM3 SCF-MO method¹² for MxPSe₂ 6 is very similar to the X-ray determined structure for 4 as follows: P-N 2.039 Å, P-C-C 95.9°, N-C-C 106.1°, P-C-C-N 0.2°.

In summary, we have found direct evidence that the nitrogen lone pair is powerful enough to stabilize unstable molecules containing polarizable bonds even when required to form a distorted four-membered ring upon coordination.

This work was supported in part by the Grants-in-Aid for Scientific Research (Nos. 06453033 and 06227209) from the Ministry of Education, Science and Culture, Japanese Government.

Received, 10th November 1994; Com. 4/06873D

J. CHEM. SOC., CHEM. COMMUN., 1995

Footnotes

 \dagger In fact, there are several organometallic compounds stabilized by internal five- or six-membered ring coordination.^{13}

‡ Selected spectroscopic data: 1. Colourless crystals, mp 56.0–57.5 °C; ¹H NMR (200 MHz, CDCl₃) δ 1.31 (s, 9H, p-Bu^t), 1.55 (s, 9H, o-Bu^t), 1.73 (br s, 4H, CH₂), 2.65 (br s, 2H, NCH), 3.14 (br s, 2H, NCH), 6.99 (d, J 2.4 Hz, 1H, arom.), 7.21 (d, J 2.4 Hz, 1H, arom.); ¹³C{¹H} NMR (50 MHz, CDCl₃) δ 24.4 (CH₂), 26.4 (CH₂), 30.3 (CMe₃), 31.4 (CMe₃), 35.0 (CMe₃), 37.6 (CMe3), 54.3 (NCH2), 116.6 (arom., CH), 119.5 (arom., CBr), 120.2 (arom., CH), 148.3 (arom.), 149.8 (arom.), 152.9 (arom.); MS (70 eV) m/z (rel. intensity) 353 (M⁺ + 2, 100), 351 (M⁺, 100), 272 (M⁺ - Br, 58), 83 [(CH₂)₅N⁺ - 1, 62]; IR (KBr) 1585 and 1560 cm⁻¹. Found: *m*/*z* 351.1561 calc. for C₁₉H₃₀⁷⁹BrN 351.1561. **3**: ³¹P NMR (81 MHz, CDCl₃) δ -141.4 (t, ¹J_{PH} 214.8 Hz). Found: *m*/*z* 305.2264 calc. for C₁₉H₃₂NP 305.2272. 4: Yellow prisms, mp 264-266 °C (decomp.); ¹H NMR δ 1.31 (s, 9H, p-Bu¹), 1.57 (s, 9H, o-Bu¹), 1.5-2.0 (m, 4H, CH₂), 2.39 (br q, J 13 Hz, 2H, CH₂), 3.01 (br q, J 13 Hz, 2H, NCH), 4.16 (br d, J 13 Hz, 2H, NCH), 6.96 (dd, J_{PH} 2.7, J_{HH} 1.3 Hz, 1H, arom.), 7.49 (dd, J_{PH} 8.2 Hz, J_{HH} 1.3 Hz, 1H, arom.); ⁷⁷Se NMR (38 MHz, CDCl₃, external standard Me₂Se) δ 397.4 (d, ¹*J*_{PSe} 817.9 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 21.4 (CH₂), 22.5 (CH₂), 31.2 (CMe₃), 31.7 (CMe₃), 35.8 (CMe₃), 36.6 (CMe₃), 55.1 (NCH₂), 112.6 (d, J_{PC} 9.7 Hz, arom., CH), 126.7 (d, J_{PC} 12.5 Hz, arom., CH), 139.2 (d, J_{PC} 65.8 Hz, *ipso*-arom.), 147.4 (d, J_{PC} 3.2 Hz, arom.), 151.6 (d, J_{PC} 3.0 Hz, arom.), 157.3 (d, J_{PC} 2.7 Hz, arom.); UV (CH₂Cl₂) λ_{max} 284 nm (sh, log ϵ 3.91); IR (KBr) 580 cm⁻¹; MS m/z 463 (M⁺, 20), 382 (M⁺ - Se - 1, 22), 303 (M⁺ - 2Se, 100), 57 (Bu^{t+}, 35). Found: m/z 463.0442 calc. for C19H30NP80Se2 463.0446.

§ Crystal data for 4: Recrystallization from benzene. $C_{19}H_{30}NPSe_2\cdot C_6H_6$, $M_r = 539.46$. Monoclinic, space group $P2_1/n$, a = 15.626(3), b = 14.073(2), c = 11.565(2) Å; $\beta = 90.89(1)^\circ$, V = 2542.8(6) Å³, Z = 4, $D_c = 1.409$ g cm⁻³, $\mu = 29.83$ cm⁻¹, 4687 unique reflections with $20 \le 50.0^\circ$ were recorded on a four-circle diffractometer (Mo-K α radiation, graphite monochromator). Of these, 3179 with $I > 3\sigma(I)$ were judged as observed. The structure was solved with SHELXS86.^{9a} The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at calculated positions. R = 0.051, $R_w = 0.057$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1. ¶ The CAChe program is available from CAChe Scientific, Inc.

References

- M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587; 1982, 104, 6167.
- R. Appel, F. Knoch and H. Kunze, *Angew. Chem., Int. Ed. Engl.*, 1983,
 22, 1004; J. Navech, J. P. Majoral and R. Kraemer, *Tetrahedron Lett.*, 1983,
 24, 5885.
- 3 M. Yoshifuji, K. Toyota, K. Ando and N. Inamoto, *Chem. Lett.*, 1984, 317.
- 4 (a) M. Yoshifuji, M. Hirano and K. Toyota, *Tetrahedron Lett.*, 1993, 34, 1043; (b) M. Yoshifuji, S. Sangu, M. Hirano and K. Toyota, *Chem. Lett.*, 1993, 1715.
- 5 M. Yoshifuji, K. Kamijo and K. Toyota, *Tetrahedron Lett.*, 1994, 35, 3971.
- 6 M. Yoshifuji, K. Kamijo and K. Toyota, Chem. Lett., 1994, 1931.
- 7 A. J. de Koning, *Recl. Trav. Chim. Pays-Bas*, 1973, **92**, 839 and references cited therein.
- 8 M. Yoshifuji, K. Shibayama and N. Inamoto, Chem. Lett., 1984, 603.
- 9 (a) G. M. Sheldrick, SHELXS86: Programs for the Automatic Solution of Crystal Structures, University of Göttingen, Germany, 1986; (b) C. K. Johnson, ORTEP-II, Oak Ridge National Laboratory Report, ORNL-TM-5138, Oak Ridge, TN, 1976.
- 10 A. Schmidpeter, G. Jochem, K. Karaghiosoff and C. Robl, Angew. Chem., Int. Ed. Engl., 1992, 31, 1350.
- 11 J. C. Fitzmaurice, D. J. Williams, P. T. Wood and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1988, 741.
- 12 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 and references cited therein.
- 13 G. van Koten, J. T. B. H. Jastrzebski, J. G. Noltes, A. L. Spek and J. C. Schoone, J. Organomet. Chem., 1978, 148, 233; P. Arya, J. Boyer, F. Carré, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot and C. Priou, Angew. Chem., Int. Ed. Engl., 1989, 28, 1016.