
J. CHEM. SOC., CHEM. COMMUN., 1995 297 
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The 2,4-di-tert-butyl-6-(l-piperidino)phenyl group is utilized to stabilize diselenoxophosphorane and the structure 
determined by X-ray analysis indicates coordination of the nitrogen lone-pair to the P-atom to form a 
four-membered ring with a remarkably distorted P-C-C bond angle. 

Kinetic stabilization using bulky substituents is a useful method 
for the investigation of low-coordinated phosphorus com- 
pounds. Utilizing an extremely bulky 2,4,6-tri-tert-butylphenyl 
group (hereafter abbreviated to Ar) as a sterically protecting 
auxiliary, we and others have been successful in the preparation 
of various types of niultiply bonded phosphorus compounds 
such as diphosphenes and dithioxophosphoranes.2~3 

On the other hand, thermodynamic stabilization is an 
alternative technique for stabilization of such compounds. 
Recently, we have developed some novel stabilizing groups, 
such as the 2,4-di-ter-t-butyl-6-(dimethylamino)phenyl group 
(Mx) ,~  the 2,4-di-tert-butyl-6-(dimethylaminomethyl)phenyl 
group ( M a m ~ ) ~  and the 2,4-di-tert-butyl-6-[ 1,l -dimethyl-2-(di- 
methylamino)ethyl]phenyl group (Maar)? having an electron- 
donating part within their moieties. 
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Using these substi tuents, dithioxophosphoranes as well as 
selenoxo- and thioxo-phosphines were prepared as stable 
compounds. In these compounds, the phosphorusxhalcogen 
bonds are stabilized by both steric protection of the o-tert-butyl 
group and intramolecular coordination of the amino group of 
the substituents at the ortho position. 

Now we report a novel stabilizing group, the 2,4-di-tert- 
butyl-6-( 1 -piperidin0 bphenyl group (Pix = piperidinoxylene 
derivative), which is cxpected to have a similar protecting and 
coordinating ability to the Mx group upon four-membered ring 
coordination. However, the coordinating ability of the Pix group 
would be expected to be lower than that of Mamx or Maar, for 
which five- or six-membered ring coordination is preferred. 

The sterically hindered bromobenzene 1 was prepared from 
2-bromo-3,5-di-tert-butylaniline 27 and was converted to the 
corresponding diselenoxophosphorane 4 via an intermediary 
primary phosphine 3.f Similarly, diselenoxophosphoranes with 
the Maar and Mamx groups were prepared, and are expected to 
form intramolecular six- and five-membered rings upon 
coordination. 3lP NMR chemical shifts of those compounds 
together with data for 5 8  and 64a are listed in Table 1. Interaction 
of nitrogen to phosphorus in the diselenoxophosphoranes is 
clearly shown by 31P NMR spectroscopy. The signals due to the 
diselenoxophosphoranes 4 and 6 appear at higher field by ca. 
125 ppm than that of non-coordinated diselenoxophosphorane 
5. This up-field shif: is ascribable to the coordination of the 
nitrogen lone pair to the phosphorus atom in this system. The 6p 

values for 4 and 6 lie between those for 5 and MamxPSe2 
reflecting the efficiency in coordination. This tendency is 
observed for the corresponding dithioxophosphoranes.4-6 In the 
case of 4, such internal coordination is achieved by forming a 
four-membered ring, while five- and six-membered rings are 
preferably formed in the corresponding dithioxophosphoranes, 
7 and 8, respectively, the structures of which were confirmed by 
X-ray analysis.576 

The four-membered ring coordination in 4 was unambigu- 
ously established by X-ray crystallographic analysis. 0 Fig. 1 
depicts the molecular structure of 4.9b The P=Se bond length for 
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Scheme 1 Reagents and conditions: i ,  NaBb-CH2(CH2CH0)2, 73%; ii, 
BunLi (1.2 equiv.), Et20, 0 "C; iii, PC13 (4.0 equiv.), Et20, -78 "C; iv, 
LiA1H4 (3.0 equiv.), EtZO; v, Se (4.0 equiv.), 1,8-diazabicyclo[5.4.O]undec- 
7-ene (ca. 1 equiv.), C6H6, 25 "C, 20 h, 38% from 1 
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Table 1 31P NMR data for some diselenoxophosphoranes (81 MHz, 
CDC13) 

Diselenoxophosphorane aP lJpsJHz 

PixPSe2 4 147.7 813.0 
MxPSe2 60 149.6 819.6 
MamxPSe2 123.6 789.8 
MaarPSe2 108.7 769.0 
ArPSe2 5 b  273.0 854.5 

Data taken from ref. 4(a). Data taken from ref. 8. 
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Fig. 1 Molecular structure for 4 showing the atom labelling scheme and 
thermal ellipsoids at the 50% probability level. Hydrogen atoms and the 
incorporated benzene molecule are omitted for clarity. Some important 
bond lengths (A) and bond and dihedral angles ("): Se( 1)-P 2.085(2), Se(2)- 

1.391(8), C(2)-C(7) 1.521(8), C(1)-C(6) 1.374(8), Se(l)-P-Se(2) 
121.80(8), Se(1)-P-C(1) 116.8(2), C(15)-N-C(19) 111.2(5), P-C(l)-C(G) 

3.1(5) 

P 2.085(2), P-N 2.039(5), P-C(1) 1.814(6), N-C(6) 1.461(7), C(I)-C(2) 

96.3(4), C( l)-C(2)-C(7) 124.0(5), N-C(6)-C( 1) 106.8(5), P-C( 1)-C(6)-N 

4 is 2.085(2) 8, and is almost identical to those for 9 [2.081(2) 
8, and 2.079(2) I$]10 or 10 [2.081(2) and 2.091(2) I$],11 but 
much shorter than the P-Se single bond in 10 [2.258(1) 
The bond angle Se-P-Se for 4 is 121.80(8)" and is slightly 
narrower than that for 9 [124.5(1)"]. The P-N distance for 4 is 
2.039(5) A and isomuch shorter than the sum of the van der 
Waals radii, (3.4 A), but is considerably longer than that for 8 
[1.918(9) A] or 7 [1.921(8) I$]. The most striking feature for 4 
is that the bond angle P-C(1)-C(6) is significantly narrowed to 
96.3(4)" in forming the four-membered ring, while N-C(6)- 
C( 1) is 106.8(5)". The corresponding P-C-C bond angles for 7 
and 8 are 109.7(8) and 119.3(9)", respectively. The other bonds 
in 4 are not so distorted indicating that the P-C bond of sp2 
configuration is flexible enough to allow distortion of 24". Th,e 
atoms C( l), P, N and C(6) are almost coplanar within 0.02 A 
and the plane makes an angle of 89.3" with the triangle 
C( 1)Se( 1)Se(2). The atom P is 0.292 A above the triangle plane 
toward N. The benzene ring C(l)-C(6) is coplanar within 0.01 
A and the atoms P and N are almost on the plane, -0.049 and 
0.060 A below and above, respectively. It is interesting to note 
that an energy-optimized structure calculated by CAChe- 
MOPACfl using PM3 SCF-MO method12 for MxPSe2 6 is very 
similar to the X-ray determined structure for 4 as follows: P-N 
2.039 A, P-C-C 95.9', N-C-C 106.1", P-C-C-N 0.2". 

In summary, we have found direct evidence that the nitrogen 
lone pair is powerful enough to stabilize unstable molecules 
containing polarizable bonds even when required to form a 
distorted four-membered ring upon coordination. 
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Footnotes 
j- In fact, there are several organometallic compounds stabilized by internal 
five- or six-membered ring coordination.13 
$ Selected spectroscopic data: 1. Colourless crystals, mp 56.0-57.5 "C; lH 
NMR (200 MHz, CDC13) 6 1.31 (s, 9H,p-But), 1.55 (s, 9H, o-But), 1.73 (br 
s, 4H, CH2), 2.65 (br s, 2H, NCH), 3.14 (br s, 2H, NCH), 6.99 (d, J 2.4 Hz, 
lH, arorn.), 7.21 (d, J 2.4 Hz, lH, arom.); 13C( 1HJ NMR (50 MHz, CDCl3) 
6 24.4 (CH2), 26.4 (CH2), 30.3 (CMe3), 31.4 (CMe3), 35.0 (CMe3), 37.6 
(CMe3), 54.3 (NCH2), 116.6 (arom., CH), 119.5 (arom., CBr), 120.2 (arom., 
CH), 148.3 (arom.), 149.8 (arom.), 152.9 (arom.); MS (70 eV) mlz (rel. 
intensity) 353 (M+ + 2, loo), 351 (M+, loo), 272 (M+ - Br, 58), 83 
[(CH2)5N+ - 1,621; IR (KBr) 1585 and 1560 cm-l. Found: mlz 351.1561 
calc. for C1yH3079BrN 351.1561. 3: 31P NMR (81 MHz, CDC13) 6 -141.4 
(t, 'JpH 214.8 Hz). Found: mlz 305.2264 calc. for C1yH32NP 305.2272. 4: 
Yellow prisms, mp 264-266 "C (decomp.); 1H NMR 6 1.31 (s, 9H,p-But), 
1.57 (s, 9H, o-But), 1.5-2.0 (m, 4H, CH2), 2.39 (br q, J 13 Hz, 2H, CH2), 
3.01 (br q, J 13 Hz, 2H, NCH), 4.1 6 (br d, J 13 Hz, 2H, NCH), 6.96 (dd, JPH 
2.7, JHFl 1.3 Hz, lH, arom.), 7.49 (dd, JPH 8.2 Hz, J H H  1.3 Hz, lH, arom.); 
77Se NMR (38 MHz, CDC13, external standard MezSe) 6 397.4 (d, l J p s e  

31.2 (CMe3), 31.7 (CMe3), 35.8 (CMe3), 36.6 (CMe3), 55.1 (NCH2), 112.6 
(d, Jpc 9.7 Hz, arom., CH), 126.7 (d, Jpc 12.5 Hz, arom., CH), 139.2 (d, Jpc 
65.8 Hz, ipso-arom.), 147.4 (d, Jpc 3.2 Hz, arom.), 151.6 (d, Jpc 3.0 Hz, 
arom.), 157.3 (d, Jpc 2.7 Hz, arom.); UV (CH2CI2) h,,, 284 nm (sh, log E 

3.91); IR (KBr) 580 cm-1; MS mlz 463 (M+, 20), 382 (M+ - Se - 1,22), 
303 (M+ - 2Se, loo), 57 (But+, 35). Found: mlz 463.0442 calc. for 
C19H30NP80Sez 463.0446. 
0 Crystal data for 4: Recrystallization from benzene. c 19H&PSe2'C6H6, 
M ,  = 539.46. Monoclinic, space group P21/n, a = 15.626(3), b = 
14.073(2), c = 11.565(2) A; fi = 90.89(1)", V = 2542.8(6) A3, Z = 4, D, 
= 1.409 g ~ m - ~ ,  p = 29.83 cm-l, 4687 unique reflections with 29 d 50.0" 
were recorded on a four-circle diffractometer (Mo-Ka radiation, graphite 
monochromator). Of these, 3179 with I > 30(1) were judged as observed. 
The structure was solved with sHELxS86.9~ The non-hydrogen atoms were 
refined anisotropically . Hydrogen atoms were included at calculated 
positions. R = 0.051, R,  = 0.057. Atomic coordinates, bond lengths and 
angles, and thermal parameters have been deposited at the Cambridge 
Crystallographic Data Centre. See Information for Authors, Issue No. 1. 
1 The CAChe program is available from CAChe Scientific, Inc. 

817.9 Hz); 13C( 'H) NMR (150 MHz, CDC13) 6 21.4 (CHZ), 22.5 (CH2), 
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