Electrochemical-optical and -ESR Investigation of the Reaction between Oxygen and π -Neutral Radicals of Zn^{II}- and Fe^{II}-Protoverdohaem Dimethylester

Kunihiko Tajima,*a Kanako Shimizu,a Hirotsugu Mano,a Kazuo Mukaia and Nagao Azumab

^a Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790, Japan

^b Department of Chemistry, Faculty of General Education, Ehime University, Matsuyama 790, Japan

Electrochemically generated π -neutral radicals of Zn^{II}- and Fe^{II}-protoverdohaem dimethylesters are concluded to be the intermediate species in the process of the biliverdin formation.

Verdohaemochrome has been assumed to be decomposed into biliverdin derivatives by a reductant, *e.g.* ascorbic acid,¹ phenyl hydrazine,² under aerobic conditions. Recently, we³ have reported that the one electron reduction of Fe^{II} octaethylverdohaem ([Fe^{II}**OEV**]⁺) gave a π -neutral radical species, which was deduced to be the transient intermediate species in verdohaem decomposition. Here, the chemical reactivity of π -neutral radicals of Zn^{II}- and Fe^{II}-protoverdohaems towards molecular oxygen is studied in order to obtain information about the role of the central iron atom in verdohaem decomposition.

According to ordinary methods,⁴ Zn^{II}-protoverdohaem dimethylester[†] ([Zn¹¹**PV**]⁺) was prepared from α -protobiliverdin. By the same method, Fe^{III}-verdohaem complex was synthesized and purified as a bis-pyridine complex $[Fe^{II}PV(Py)_2]^{+.4}$ The purity of these verdohaems was clarified by elemental analysis, optical absorption and ¹H NMR (270 MHz) measurements.‡ The electrochemical-optical absorption, ESR and cyclic voltammogram measurements were carried out in a DMF-pyridine (6:4) solution, containing TBAP (0.1 mol dm^{-3}) as a supporting electrolyte. A Yanagimoto P-1000H Voltammetric Analyser equipped with Pt-disk (2.0 mm diameter), Pt-wire counter and (Ag/0.1 mol dm⁻³ Ag⁺)§ reference electrodes was used for CV measurements. $[Zn^{II}PV]^+$ (0.2 mmol dm⁻³) gave a nearly reversible CV with 110 mV peak separation. The formal redox potential of $[Zn^{II}PV]^+$ was estimated to be --847 mV vs. Ag/Ag⁺. The formal redox potential of $[Fe^{II}PV(Py)_2]^+$ was also estimated to be -903 mV vs. Ag/Ag⁺ (Table 1). No detectable oxidation peak current, supporting the formation of $[Fe^{III}PV(Py)_2]^+$ or $[Fe^{II}PV(Py)_2]^{2+}$, has been recorded for the complex in DMF-pyridine. In addition, the ferrous complex was very stable towards molecular oxygen, and did not decompose to biliverdin under aerobic conditions. Thus, the possibility of a redox couple occurring between the ferrous complex and molecular oxygen, forming the ferric complex and superoxide anion, can be safely ruled out.

By utilizing an optically transparent thin layer electrode,⁵ the optical absorption spectra of $[Zn^{II}PV]^+$ (0.2 mmol dm⁻³) were recorded by a JASCO UVDEC-1 spectrometer. As shown in Fig. 1(*a*), absorption coefficients at 418, 464 and 804 nm showed concomitant increases with variation of the supplied potential from -650 to -800 mV vs. Ag/Ag⁺. On the other hand, the absorption maxima due to $[Zn^{II}PV]^+$ at 400 and 677

nm, have almost disappeared after *ca*. 10 min. with a supply of -800 mV. Three sets of isosbestic points, 415, 514 and 718 nm, can be identified during the electrolysis of $[\text{Zn}^{II}\text{PV}]^+$. The optical spectrum due to the $[\text{Zn}^{II}\text{PV}]^+$ was again recorded, when the supplied potentials were increased to -650 mV vs. Ag/Ag⁺. In addition, coulometric analysis provided experimental evidence that the observed spectral change arose from a reversible one-electron reduction of $[\text{Zn}^{II}\text{PV}]^+$.

ESR measurements were performed by a JEOL FE2XG Xband spectrometer equipped with a simultaneous electrochemical-ESR cell⁶ with a Au-helix working electrode. An isotropic ESR signal (g = 2.003), having a broad doublet splitting (3 gauss), was observed [inset of Fig. 1(*a*)] at -30 °C by reduction of [Zn^{II}**PV**]⁺ on supplying -850 mV (Ag/Ag⁺). Based on the observed g-value,¶ the paramagnetic species can be ascribed to be a π -neutral radical of Zn^{II}-protoverdohaem-IX dimethylester, [Zn^{II}**PV**][.]

On changing the potential from -720 to -900 mV (Ag/Ag⁺), the one electron reduced species of [Fe^{II}**PV**(Py)₂]⁺ showed absorption maxima at 451, 554 and 762 nm [Fig. 1(*b*)], with four sets of isosbestic points. The electrochemical-ESR spectrum observed at -30 °C for the one-electron reduced [Fe^{II}**PV**(Py)₂]⁺ revealed an isotopic ESR signal (g = 1.985), as shown in the inset of Fig. 1(*b*). The frozen solution at -110 °C gave an anisotropic ESR signal ($g_{\perp} = 2.002, g_{\not=} = 1.937$). The observed ESR parameters agreed well with that recorded for π neutral radical⁵ species of [Fe^{II}**OEV**(py)₂]⁺, Table 1. This paramagnetic species is therefore assigned to be a π -neutral radical, [Fe^{II}**PV**(Py)₂]⁻, in which the central iron atom takes a ferrous low-spin state.

Under aerobic conditions, electrochemical-optical absorption measurements were carried out for $[Zn^{II}PV]^+$. During the potential variation from -650 to -800 mV (Ag/Ag⁺), absorption coefficients of $[Zn^{II}PV]^+$ at 400, 521, 556 and 679 nm showed a stepwise decrease (Fig. 2). After supplying -830 mV for *ca*. 10 min., absorption maxima due to $[Zn^{II}PV]^+$ had almost disappeared, while new absorption maxima appeared at 387, 457 and 646 nm, Fig. 1(*b*). The optical spectrum due to $[Zn^{II}PV]^+$ was not observed by applying -650 mV again. The new absorbing species was assumed to be a Zn^{II} -biliverdin complex, in terms of the observed optical parameters.⁷ The characteristic absorption maxima due to the π -radical species

Table 1 The formal redox potentials and spectroscopic properties of Zn^{II} - and Fe^{II} -protoverdohaems and their π -neutral radicals

Complexes	Verdohaem complexes Optical property/nm	Redox potential/ mV vs. (Ag/Ag ⁺)	π-Neutral radicals Optical property/nm	ESR parameters		
				giso	g⊥	8 //
$[Zn^{II}PV]^{+a}$	400 521 556 677	-737	451 464 697(sh) 804	2.002	2.002	2.000
$[Fe^{II}PV(Py)_2]^{+a}$	392 504 534 673	-903	451 554 675(sh) 762	1.985	2.002	1.937
$[Fe^{II}OEV(Py)_2]^{+b}$	387 494 527 652	-1060	439 650 740	1.982	2.000	1.934

^a Present study. ^b Ref. 3.

(464 and 804 nm) were scarcely detected. In fact, no detectable ESR signal due to the $[Zn^{II}PV]$ was observed by reduction of $[Zn^{II}PV]^+$ in the presence of oxygen. An analogous spectral change was also observed during the electrolysis of $[Fe^{II}PV(Py)_2]^+$ at -950 mV under aerobic conditions. In this case, the absorption spectrum of $[Fe^{II}PV(Py)_2]^+$ was fully changed to an iron-biliverdin complex [Fig. 2(b)], as shown by absorption maxima at 390 and 850 nm.⁸ In addition, an ESR signal assigned as $[Fe^{II}PV(Py)_2]$ was not detected under these reaction conditions. These observations suggest that the $[Zn^{II}PV]$ and $[Fe^{II}PV(Py)_2]$ have very short life-times and are

rapidly changed to the corresponding biliverdin species by reaction with molecular oxygen.

On the basis of the results described, a possible reaction mechanism is proposed for verdohaem degradation (Scheme 1). The first reaction is the one electron reduction of verdohaem to the verdohaem π -radical, $[Zn^{II}PV]$ and $[Fe^{II}PV(Py)_2]$. In the second stage, the verdohaem radical is oxygenated by molecular oxygen. The verdohaem-peroxide radical or -ozonide species (Scheme 1), are probable transient intermediate species. From comparison of the chemical reactivity of $[Zn^{II}PV]$ and $[Fe^{II}PV(Py)_2]$ towards molecular oxygen, it is, therefore, concluded that the central iron atom does not take part in the

(a)

Fig. 1 Electrochemical optical absorption and ESR spectra observed for (*a*) $[Zn^{11}PV]^+$ and (*b*) $[Fe^{11}PV(Py)_2]^+$ complexes in DMF–pyridine (6:4) under nitrogen at 25 °C. (*a*) Applied potential for reduction of $[Zn^{11}PV]^+$; i, before reduction, ii, -650; iii, -680; iv, -710; v, -760 and vi, -800 mV vs. Ag/Ag⁺. Inset: ESR spectrum of $[Zn^{11}PV]^-$ recorded by electrochemical ESR cell [-850 mV (Ag/Ag⁺)] at -30 °C *in vacuo*. (*b*) Applied potential for reduction; ii, -720; iii, -780; iv, -820; v, -860 and vi, -900 mV vs. Ag/Ag⁺. Inset: ESR spectrum of $[Fe^{11}PV(Py)_2]^+$; i, before reduction; ii, -720; iii, -780; iv, -820; v, -860 and vi, -900 mV vs. Ag/Ag⁺. Inset: ESR spectrum of $[Fe^{11}PV(Py)_2]^-$ recorded by electrochemical ESR cell [-900 mV (Ag/Ag⁺)] at -30 °C *in vacuo*.

Fig. 2 Electrochemical optical absorption and ESR spectra observed for (*a*) $[Zn^{II}PV]^+$ and (*b*) $[Fe^{II}PV(Py)_2]^+$ complexes under oxygen at 25 °C. (*a*) Applied potential for reduction of $[Zn^{II}PV]^+$; i, before reduction, ii, -650; iii, -690; iv, -730; v, -770 and vi, -800 mV vs. Ag/Ag⁺. (*b*) Applied potential for reduction of $[Fe^{II}PV(Py)_2]^+$; i, before reduction; ii, -720; iii, -780; iv, -840; v, -870 and vi, -900 mV vs. Ag/Ag⁺.

Scheme 1 Possible reaction mechanisms for the reductive decomposition of ZnII- and FeII-protoverdohaem to biliverdin

activation of molecular oxygen relating to the verdohaem cleavage reaction.

Received, 13th October 1994; Com. 4/06259K

Footnotes

† OEP octaethylporphyrin; PV+ protoverdohaem dimethylester; TBAP tetra-n-butylammonium perchlorate.

[‡] ¹H NMR parameters of verdohaems were as follows; $[Zn^{II}PV]^+$ (in CDCl₃): δ 9.28, 9.05, 9.00 (3H, s *meso*), 3.00 (6H, s, CH₃), 3.60, 3.10 (6H, s, CH₃), 3.90 (4H, t, py-CH₂), 3.02 (4H, t, py-CH₂), 3.68 (6H, s, OCH₃), 7.60, 7.38 (2H, d, py-CH), 6.70, 6.00 (2H, d, =CH₂), 6.20, 6.10 (2H, d, =CH₁); [Fe^{II}PV(Py)₂]⁺ ([²H₃]-pyridine): δ 9.00, 8.65, 9.05 (3H, s, meso), 3.48 (6H, s, CH₃), 3.45, 3.41 (6H, s, CH₃), 3.90 (4H, t, py-CH₂), 3.02 (4H, t, -CH₂-), 3.50 (6H, s, OCH₃), 7.41, 7.21 (2H, d, py-CH), 6.56, 5.93 (2H, d, =CH₂), 6.02, 5.88 (2H, d, =CH), 3.22 (4H, α-pyridine), 5.80 (4H, β-pyridine), 6.50 (2H, γ-pyridine).

 $0 \text{ mV } vs. \text{ (Ag/0.1 mol dm}^{-3} \text{ Ag}^+\text{)}$ corresponds closely to 390 mV vs. SCE in the present reaction system.

¶ The g-values of observed ESR spectra were estimated by using lithium salt of tetracyanoquinodimethane (Li-TCNQ; g = 2.0025) as an external standard.

References

- 1 S. Sano, T. Sano, I. Morishima, Y. Shiro and Y. Maeda, Proc. Natl. Acad. Sci., USA, 1986, 83, 53.
- 2 T. Hirota and H. A. Itano, Tetrahedron Lett., 1983, 24, 995.
- 3 K. Tajima, K. Tada, A. Yasui, H. Ohya-Nishiguchi and K. Ishizu, J. Chem. Soc., Chem. Commun., 1993, 282.
- 4 S. Saito and N. Tamura, Bull. Chem. Soc. Jpn., 1987, 60, 4037; S. Saito, S. Sumita, K. Iwai and H. Sano, Bull. Chem. Soc. Jpn., 1988, 61, 3539.
- 5 Cf., X. Q. Lin and K. M. Kadish, Anal. Chem., 1985, 57, 1498.
- 6 Cf., H. Ohya-Nishiguchi, Bull. Chem. Soc. Jpn., 1979, 52, 2064.
- 7 S. Saito and H. A. Itano, J. Chem. Soc., Perkin Trans. 1, 1986, 1.
- 8 S. Modi, J. Inorg. Biochem., 1993, 52, 297.