Oxidative Coupling Reaction of CH₄ Using Oxide Ion and Electron Hole Mixed Conductive BaCe_{0.8}Gd_{0.2}O_{3- α} Ceramic as a Membrane Reactor

Takashi Hibino, Ken-ichi Ushiki and Yoshitaka Kuwahara

Material Structure Designing Laboratory, Structure Formation Process Department, National Industrial Research Institute of Nagoya, 1-1, Hirate-cho, Kita-ku, Nagoya 462, Japan

When CH₄ and O₂ are fed into opposite sides of an electrochemical reactor using BaCe_{0.8}Gd_{0.2}O_{3- α} ceramic as a solid oxide membrane, the formation of C₂ hydrocarbons is enhanced by self-short circuiting the reactor owing to oxide ion and electron hole mixed conduction in the ceramic.

Mixed conductors are materials which exhibit both ionic and electronic conductivities. These materials have been studied for gas separation, hydrogen storage, electrodes for batteries, photographic processes, electrochromic display, *etc.* Recently, Bonanos *et al.* have reported that the electric conduction of BaCeO₃ ceramic is dramatically changed by partial substitution of Gd³⁺ for Ce⁴⁺ in the ceramic.¹ The dopant ions, Gd³⁺, are compensated by oxide ion vacancies and electron holes, and oxide ion and electron hole mixed conduction thus appears in the ceramic.

The oxidative coupling reaction of CH_4 is of interest because of the advantage of having a one-step process from CH_4 to C_2 hydrocarbons:

$$2CH_4 + 1/2O_2 \rightarrow C_2H_6 + H_2O$$
 (1)

$$2CH_4 + O_2 \rightarrow C_2H_4 + 2H_2O \tag{2}$$

In addition to heterogeneous catalytic research, this reaction has been studied using pure oxide ion conductors such as CSZ and YSZ ceramics as solid oxide membranes.² One side is exposed to CH₄ and serves as the catalysis electrode (anode), while the other side is exposed to O₂ and serves as the counter electrode (cathode). By supplying a direct current between the two electrodes, C₂ hydrocarbons are formed *via* the oxidative coupling reaction of CH₄. This offers the advantage of eliminating the undesirable gas-phase combustion of CH₄ by gaseous O₂. However, if the above-mentioned BaCe_{1-x}Gd_x-O_{3-\alpha} ceramics are used as the solid oxide membrane, there arises another advantage. The external electric source, the electrode materials, the current collectors and the output terminals are not necessary for transporting oxide ions through the membrane, because of a self-discharge of the reactor owing to the mixed conduction in the ceramic. We report here such an occurrence when a BaCe_{0.8}Gd_{0.2}O_{3- $\alpha}$ ceramic, which shows the highest conductivity among BaCe_{1-x}Gd_xO_{3- $\alpha}$ ceramics, is used as the solid oxide membrane.}}

The BaCe_{0.8}Gd_{0.2}O_{3- α} ceramic was prepared by solid-state reaction followed by sintering. The desired amounts of starting materials [Ba(MeCO₂)₂, CeO₂ and Gd₂O₃] were mixed with ethanol and calcined at 1623 K for 10 h in air. The oxide was ground in a ball mill at a rotation rate of 112 rpm for 1 h and pressed into a pellet at 2 × 10³ kg cm⁻². The pellet was sintered at 1923 K for 10 h in air and cut into a disk (thickness 0.35 mm, diameter 12 mm). Since the density of the ceramic was >95% of its theoretical value, the mechanical leakage of gas through the disk was negligible.

Two gas compartments were constructed by interposing the disk between two alumina tubes. Each compartment was sealed by a glass ring gasket. Methane (10%, diluted with Ar) was fed into one compartment at 1173 K, and an O₂-Ar mixture at a given ratio was fed into the other compartment at the same temperature. In the CH₄ compartment, the flow rate was 20 ml min⁻¹. In the O₂-Ar mixture compartment, p_{O_2} was monitored using an YSZ oxygen sensor. The outlet gas from the CH₄ compartment was analysed by gas chromatography.

Fig. 1 Effect of p_{O_2} in the O₂-Ar compartment on formation rates of products and conversion of CH₄. \otimes = C₂H₄; \bigcirc = C₂H₆; \triangle = CO; \times = CO₂; \bullet = CH₄ conversion.

Fig. 2 Effect of p_{O_2} in the CH₄–O₂ co-feed gas on formation rates of products and conversion of CH₄. The symbols correspond to those shown in Fig. 1.

To compare the oxygen species transported through the membrane with gaseous O₂ in the gas phase, 10% CH₄ and a small amount of O₂ were co-fed into one compartment at 1173 K. In this case, a H₂-Ar mixture with $p_{O_2} = 4 \times 10^{-14}$ atm was fed into the other compartment in order to block the oxygen species through the membrane.

Typical results of the oxidation reactions of CH₄ by the oxygen species transported through the membrane are summarized in Fig. 1. The products C_2H_4 , C_2H_6 , H_2 , CO and CO₂ were formed in the CH₄ compartment, but O₂ was not observed in its outlet gas, indicating that all oxygen species transported are consumed in the oxidation of CH₄ without the formation of

Fig. 3 Difference in C_2 selectivity between membrane and co-feed operations. \bullet = membrane operation; \bigcirc = co-feed operation.

gaseous O₂. The formation rates of the products in the CH₄ compartment were strongly dependent on p_{O_2} in the O₂-Ar mixture compartment: all formation rates as well as the CH₄ conversion increased with p_{O_2} .

Typical results of the oxidation reaction of CH₄ by gaseous O_2 in the gas phase are summarized in Fig. 2. Compared with the membrane operation shown in Fig. 1, the formation of CO_2 and CO was enhanced, and that of C₂ hydrocarbons was reduced. The difference between the two operations is quantitatively represented in Fig. 3. The membrane operation gave higher selectivity for C_2 hydrocarbons than the co-feed operation for all CH₄ conversions. The reason for this difference can be considered as follows: (i) C2 hydrocarbons are formed by reacting CH4 with the lattice oxide ion on the surface of BaCe_{0.8}Gd_{0.2}O_{3- α} ceramic; (ii) CO₂ is formed by reacting CH₄ with gaseous O₂; (iii) the oxygen species transported from the O₂-Ar compartment are consumed by reoxidizing the reduced surface in the CH₄ compartment. More recently, we have studied the powders of BaCe_{1-x}Gd_xO_{3- α} as a heterogeneous catalyst for the oxidative coupling reaction of CH₄. Increasing both the oxide ion and electron hole conductivities in the powders enhanced the formation of C₂ hydrocarbons, but reduced that of CO₂. This result supports the above-mentioned considerations.

In summary, the membrane reactor using the oxide ion and electron hole mixed conductive BaCe_{0.8}Gd_{0.2}O_{3- α} ceramic has effectively formed C₂ hydrocarbons *via* the oxidative coupling reaction of CH₄. This reactor can be characterized by the fact that the driving force for the oxygen species transport is not the external electric source but the oxygen concentration gradient across the membrane.

The financial support by Professor Hiroyasu Hiwahara of Nagoya University, Japan, is gratefully acknowledged.

Received, 31st January 1995; Com. 5/00589B

References

- N. Bonanos, B. Ellis and M. N. Mahmood, Solid State Ionics, 1991, 44, 305.
- 2 For example, J. S. Lee and S. T. Oyama, *Catal. Rev. Sci. Eng.*, 1988, **30**, 249; D. Eng and M. Stoukides, *Catal. Rev. Sci. Eng.*, 1991, **33**, 375.