Diaryl(acyloxy)sulfonylaminospiro-λ⁴-sulfanes. Synthesis, Molecular Structure and Rearrangement

József Rábai,*a István Kapovits,a Gyula Argay,b Tibor Koritsánszkyb and Alajos Kálmán*b

^a Department of Organic Chemistry, L. Eötvös University, H-1518 Budapest 112, PO Box 32, Hungary

^b Central Research Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 17, Hungary

The preparation and the rearrangement of the first diaryl(acyloxy)sulfonylaminospiro- λ^4 -sulfane **1** are reported with the molecular structures of **1** and those of the product **2** determined by X-ray diffraction; this work demonstrates that the formation of the rearrangement products (**2** or **4**) depends on the *N*-substituent of the starting spiro- λ^4 -sulfane precursor, the sulfoxide **3** or cyclic imide **5**.

Sulfuranes (λ^4 -sulfanes) are often considered as reactive intermediates in several reactions of organosulfur compounds with bivalent or tetravalent sulfur where the valency of sulfur either changes to four or remains unchanged.¹ Our studies have centred on the preparation and reaction of λ^4 -sulfane type intermediates whose existence in the formation of, or in the acid-catalysed hydrolysis of, N-sulfonyl sulfilimines, has been established by kinetic measurements.^{2,3} Sulfoxides 3 are suitable precursors, since their structure permits formation of both the spiro- λ^4 -sulfane 1 and cyclic sulfilimine 4, depending on the substituent R at N (R = Me, H or Bu^t). We observe that spiro- λ^4 -sulfane 1 is transformed into cyclic imide 2 under conditions of spiro- λ^4 -sulfane formation. In addition, we report on the rearrangement of the cyclic imide 5 into the cyclic sulfilimine 4 under the same conditions as for the preparation of 4 from sulfoxide 3 ($R = H \text{ or } Bu^t$).

Spiro(3*H*-2,1-benzoxathiol-3-one)-1,1'-3*H*-2-methyl-1,3,2benzodithiazole-3,3-dioxide **1** was prepared from sulfoxide **3** ($\mathbf{R} = \mathbf{Me}$)⁴ by either path i or ii (Scheme 1). To obtain the spiro- λ^4 sulfane **1** in optimum yield the reaction mixture was diluted after 10–15 min with dry diethyl ether and cooled to 4 °C, and crystals of **1** were isolated by filtration (86%). With increasing time the amount of the dibenzodithiazocine **2** increases in the reaction mixture (as monitored by ¹H NMR or TLC). To obtain **2**, the reaction mixture (path i, Scheme 1) was refluxed for 3 h, then cooled and diluted with dry diethyl ether to yield the crystalline cyclic imide **2** in 89% yield. According to our preliminary experiments, this type of rearrangement can also be carried out in pyridine, AcOH and Ac₂O, or in Ac₂O–pyridine, Ac₂O–AcOH or pyridine–*p*-dimethylaminopyridine mixed solvent systems.

When the starting sulfoxide 3 possesses a hydrogen or *tert*butyl group in the SO₂NHR moiety instead of Me, the reaction (path iii, Scheme 1, R = H, 100 °C, 5 min; R = Bu^t, 100 °C, 3 h) results in the formation of the benzodithiazole 4 (78%) [mp 327–332 °C (decomp.)]. Compound 5 can also be transformed into the cyclic sulfilimine 4 under the conditions used for the transformation $3 \rightarrow 4$, or into the cyclic imide 2 by *N*methylation with diazomethane (path iv, Scheme 1).†

In aqueous solvents spiro- λ^4 -sulfane 1 is hydrolysed to the corresponding sulfoxide 3. When 1 was hydrolysed with ¹⁸Oenriched (69 atom%) water, the sulfinyl group of the product was found to contain the same amount of ¹⁸O-label as the ¹⁸Oenriched water (*cf.* refs. 4, 5). This observation indicates that the nucleophilic attack of water occurs exclusively at the S^{IV} atom of 1. The cyclic imide 2 shows resistance to attack by water (no reaction at 100 °C for 1 h); however, hydrolysis can be achieved

by treatment with sodium hydroxide or hydrochloric acid solutions (1 mol dm⁻³ NaOH, 100 °C, 15 min or 6 mol dm⁻³ HCl, 100 °C, 3 h);

The molecular structures of **1** and **2**, as determined from single-crystal X-ray diffraction‡ are shown in Figs. 1 and 2 with selected interatomic distances and angles.

Scheme 1 Reagents and conditions: i, Ac_2O -pyridine, 20 °C; ii, $(CF_3CO)_2O$ -DMF, 0-5 °C; iii, Ac_2O -pyridine, 100 °C or reflux; iv, CH_2N_2 -diethyl ether

Fig. 1 Perspective view of molecule A of 1 with numbering scheme for non-hydrogen atoms. Selected interatomic distances (Å) and angles (°) for both symmetry independent molecules A and B: S(1)–N(1) 1.7885(2), 1.745(1), S(1)–C(1) 1.811(2), 1.806(2), S(1)–C(7) 1.808(2), 1.807(2), S(1)–O(1) 2.010(2), 2.047(1), C(13)–O(1) 1.305(2), 1.282(2), C(13)–O(2) 1.217(3), 1.223(2), S(2)–N(1) 1.615(2), 1.618(2), S(2)–O(3) 1.433(2), 1.429(1), S(2)–O(4) 1.429(2), 1.433(2), S(2)–C(2) 1.748(3), 1.741(2), O(1)–S(1)–N(1) 178.4(1), 178.1(1), C(1)–S(1)–C(7) 104.2(1), 106.0(1), S(1)–N(1)–S(2) 120.8(2), 121.8(2).

Fig. 2 Perspective view of molecule A of 2 with numbering scheme for non-hydrogen atoms. Selected interatomic distances (Å) and angles (°) for both symmetry independent molecules A and B: S(1)···N(1) 2.896(2), 2.929(1), S(1)-C(1) 1.809(3), 1.825(2), S(1)-C(7) 1.800(2), 1.803(2), S(1)-O(1) 1.485(2), 1.480(1), C(13)-N(1) 1.416(3), 1.413(2), C(13)-O(2) 1.207(2), 1.207(3), S(2)-N(1) 1.648(2), 1.651(2), S(2)-O(3) 1.422(2), 1.426(1), S(2)-O(4) 1.423(1), 1.426(2), S(2)-C(2) 1.769(3), 1.757(2), O(1)-S(1)···N(1) 176.1(1), 175.7(1), C(1)-S(1)-C(7) 102.0(2), 101.5(1), S(1)···N(1)-S(2) 95.3(1), 94.2(1).

The molecular structures of 1 and 2 show slightly distorted trigonal-bipyramidal geometry about the sulfur(IV) atom (with regard to the O=S…N array in 2) similarly to the diarylacyloxycarbonylamino,6 diarylbiscarbonylamino-,7 and diaryldiacyloxyspiro- λ^4 -sulfanes.⁸ In **1** the S^{IV}–N distances (1.79, 1.75 Å in molecules A and B) are near to the sum of the covalent radii⁹ (1.74 Å), showing, however, considerable elongation compared to the corresponding distances in the analogous diarylacyloxycarbonylaminospiro- λ^4 -sulfanes⁶ (1.71–1.74 Å), while the S^{IV}-O interatomic distances in 1 (2.01, 2.05 Å) considerably shorter than for diarylacyloxyare carbonylaminospiro- λ^4 -sulfanes⁶ (2.15–2.25 Å) and approach the hypervalent S^{IV}-O bond lengths (1.84-1.87 Å) found in diaryldiacyloxyspiro- λ^4 -sulfanes.⁸ In 2, close contacts of 2.90 and 2.93 Å occur between S and N (sum of van der Waals radii⁹ 3.35 Å) which controls the conformation of the eight-membered ring of 2 (cf. ref. 10).

The authors thank the Hungarian Scientific Research Foundation (OTKA, No. 2238) for the financial support.

Received, 8th March 1995; Com. 5/01419K

Footnotes

 \dagger All new products gave satisfactory microanalysis. The syntheses of **3** and **5** were based on classical methodologies (*cf.* ref. 4); the precursor sulfide for **5** was prepared from 2-(2-aminosulfonylphenylthio)benzoic acid⁴ by

cyclization with TsCl in pyridine. The structure of the cyclic sulfilimine **4** was verified by X-ray structure determination of its methyl ester obtained from **4** by methylation with diazomethane, and will be published elsewhere.

Selected spectroscopic data: IR[v(C=O)/cm⁻¹ KBr]: for **1** 1672vs; for **2** 1711vs, 1700vs; for **3**(R = Bu^t) 1685vs; for **4** 1685vs; for **5** 1702vs; v(S=O)/cm⁻¹ (KBr): for **2** 1075s; for **3**(R = Bu^t) 1006s; for **5** 1022s. ¹H NMR (60 MHz): for **1** {[$^{2}H_{7}$]DMF-(CF₃CO)₂O, 5: 2 (ν/ν)}, δ 3.65 (s, Me); for **2** ([$^{2}H_{7}$]DMF), δ 3.44 (s, Me); for **3**(R = Me), ([$^{2}H_{7}$]DMF), δ 2.6 (d, J = 5 Hz, Me); for **3**(R = Bu^t) {[$^{2}H_{3}$]pyridine}, δ 1.35 (d, J = 3 Hz, Bu^t).

X-Ray quality single crystals of 1 (mp 225–230 °C) were grown from Ac₂O–pyridine by addition of dry diethyl ether, and of 2 (mp 187–188 °C) by crystallisation from aqueous acetone.

Crystal data for 1: C₁₄H₁₁NO₄S₂, M = 321.37, triclinic, space group $P\overline{1}$ (no. 2), a = 9.045(3), b = 11.127(3), c = 14.929(2) Å, $\alpha = 107.71(2)$, $\beta = 92.61(2)$, $\gamma = 105.10(2)^\circ$, V = 1369.2(7)Å³, Z = 4 (two molecules in the asymmetric unit), $D_c = 1.559$ g cm⁻³, monochromated Cu-Kα radiation, $\lambda = 1.54184$ Å, $\mu = 36.2$ cm⁻¹. Data were collected on an Enraf-Nonius CAD-4 diffractomer in the range $1.5 < \theta < 75.0^\circ$. The structure was determined by direct methods and refined by full-matrix least-squares analysis. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were *R* = 0.049, $R_w = 0.075$ for 4284 reflections with $I > 3\sigma(I)$ and for 5641 unique reflections $R_{tot} = 0.088$.

For 2: C₁₄H₁₁NO₄S₂, M = 321.37, monoclinic, space group $P2_1/c$ (no. 14), a = 14.588(1), b = 6.817(1), c = 27.829(5) Å, $\beta = 100.07(1)^\circ$, V = 2724.9(7) Å³, Z = 8, (two molecules in the asymmetric unit), $D_c = 1.567$ g cm⁻³, monochromated Cu-Kα radiation, $\lambda = 1.54184$ Å, $\mu = 36.3$ cm⁻¹. Data collection as for **1** giving residuals R = 0.034, $R_w = 0.050$ for 3568 reflections with $I > 3\sigma(I)$ and for 4023 unique reflections $R_{tot} = 0.062$.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- S. Oae, Organic Sulfur Chemistry: Structure and Mechanism, associate ed. J. Takahashi Joyce, CRC Press, Boca Raton, Ann Arbor, Boston, London, 1991, ch. 5 and 8.
- 2 F. Ruff, G. Szabó, J. Vajda, I. Kövesdi and Á. Kucsman, *Tetrahedron*, 1980, **36**, 1631.
- 3 I. Kapovits, F. Ruff, J. Gulyás and Á. Kucsman, *Tetrahedron*, 1976, 32, 1811.
- 4 J. Rábai, I. Kapovits, B. Tanács and J. Tamás, Synthesis, 1990, 847.
- 5 I. Kapovits, J. Rábai, F. Ruff and Á. Kucsman, Tetrahedron, 1979, 35, 1875.
- 6 D. Szabó, I. Kapovits, Á. Kucsman, P. Huszthy, Gy. Argay, M. Czugler, V. Fülöp, A. Kálmán and L. Párkányi, J. Mol. Struct., 1993, 300, 23.
- 7 L. J. Adzima, C. C. Chiang, I. C. Paul and J. C. Martin, J. Am. Chem. Soc., 1978, 100, 953.
- 8 I. Kapovits, J. Rábai, D. Szabó, K. Czakó, Á. Kucsman, Gy. Argay, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Chem. Soc., Perkin Trans. 2, 1993, 847.
- 9 L. Pauling, *The Nature of the Chemical Bond*, Cornell University Press, Ithaca, New York, 1960, 3rd edn., p. 260.
- 10 M. Kuti, J. Rábai, I. Kapovits, Á. Kucsman, L. Párkányi, Gy. Argay and A. Kálmán, J. Mol. Struct., 1994, 318, 161.