Reaction of Sodium Alkoxides with [60]Fullerene: Formation of a 1,3-Dioxolane Derivative and Involvement of $\mathbf{O}_{\mathbf{2}}$ in a Nucleophilic Addition Reaction of $\mathbf{C}_{\mathbf{6 0}}$

Guan-Wu Wang, ${ }^{\text {Lian-He Shu, }}$, Shi-Hui Wu,*a Hou-Ming Wub ${ }^{\text {b }}$ and Xia-Fei Lao ${ }^{b}$
a Department of Chemistry, Fudan University, Shanghai 200433, China
${ }^{\circ}$ State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China

[60]Fullerene reacts with $\mathrm{PhCH}_{2} \mathrm{ONa}-\mathrm{PhCH}_{2} \mathrm{OH}$ in the presence of air to afford a 1,3-dioxolane derivative of C_{60}, which was characterized by FD-MS, FTIR, UV-VIS, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HMOC and HMBC; a possible reaction mechanism is discussed.

The chemistry of C_{60} has developed very rapidly since [60]fullerene became readily available. ${ }^{1}$ A number of nucleophiles, such as organolithiums, Grignard reagents, ${ }^{2}$ amines ${ }^{3}$ and hydroxide ${ }^{4}$ are known to react with [60]fullerene. However, the alkoxylation of [60]fullerene has been much less intensively investigated. Olah et al. reported ${ }^{5}$ that polymethoxylation of [60]fullerene could be achieved by treating [60]fullerene with chlorine at high temperature, followed by KOH in refluxing methanol. Recently, Wilson's group ${ }^{6}$ detected a series of addition products $\mathrm{C}_{60} \mathrm{O}_{n}(\mathrm{OMe})_{m}(n=0-3, m=1,3,5)$ by EIMS when they studied the reaction of $\mathrm{NaOMe}-\mathrm{MeOH}$ with C_{60} in toluene. Nevertheless, until now, no pure product had been separated and characterized from reaction mixture of alkoxides with [60]fullerene. In this communication, we report the synthesis and characterization of alkoxide- C_{60} adducts.

Compound 1 was prepared by adding 5 equiv. of $\mathrm{PhCH}_{2} \mathrm{ONa}$ in $\mathrm{PhCH}_{2} \mathrm{OH}$ to a solution of C_{60} in benzene at room temp. in the presence of air (Scheme 1). Typically, 50.0 mg of C_{60} was completely dissolved in 50 ml of benzene, then, 0.7 ml (5 equiv.) of $\mathrm{PhCH}_{2} \mathrm{ONa}-\mathrm{PhCH}_{2} \mathrm{OH}$ (freshly prepared by treating 115 mg of sodium with 10 ml of benzyl alcohol) was added. The reaction mixture was stirred and monitored by HPLC. The product 1 reached its maximum yield after $c a .1 .5 \mathrm{~h}$. At that time, the reaction was quenched by adding excess dilute aq. HCl . Standard workup and silica gel column chromatography (20% toluene in n-hexane as eluent) afforded 39.0 mg of unreacted C_{60} and $8.8 \mathrm{mg}\left(68 \%\right.$, based on consumed $\left.\mathrm{C}_{60}\right)$ of compound $1 . \dagger$

The field desorption mass spectrum (FD-MS) of $\mathbf{1}$, which showed molecular ion peak at $\mathrm{m} / \mathrm{z} 842$ as base peak together with another peak at $m / z 720(21 \%)$ due to the fragment C_{60}, agreed with the proposed structure. In the IR spectrum of $\mathbf{1}$,
besides the four characteristic bands of the fullerene moiety, a number of bands due to $\mathrm{sp}^{3} \mathrm{C}-\mathrm{O}$ and phenyl were observed. The UV-VIS spectrum of 1 showed the three absorption bands from the fullerene cage with a slight blue shift in the ultraviolet region, and was structureless in the visible region. This spectrum was similar to that of a reported 1,3-dioxolane derivative of $\mathrm{C}_{60} .{ }^{7}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum, in addition to the five phenyl protons, only one singlet acetal proton was observed. This signal shifted downfield greatly due to the influence of the fullerene ring as compared to common acetal protons. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 consisted of 36 sets of inequivalent carbons. Four peaks from $\delta 127$ to 135 were due to those of phenyl, the peak at $\delta 103.25$ corresponded to the acetal carbon, and the remaining 31 peaks were from the fullerene with one overlapping peak appearing at $\delta 146.62$. The peak at δ 94.39 was originated from the sp^{3} carbon of C_{60}. This is consistent with the C_{s} symmetry of 1 , which requires 32 peaks for the fullerene moiety. The proposed structure of 1 was further substantiated by HMQC (heteronuclear multiple quantum coherence) and HMBC (heteronuclear multiple bond correlation). It was found that the proton at $\delta 7.26$ was attached to the carbon at $\delta 103.25$ and showed a three-bond correlation with the phenyl carbon at δ 127.93. The structure of 1 was also confirmed by comparison with the reported ${ }^{13} \mathrm{C}$ chemical shifts of the ketal carbon and sp^{3}-C of fullerene, IR and UV-VIS spectra of a 1,3-dioxolane derivative of [60]fullerene. ${ }^{7}$

It is well known that reaction of tertiary carbanion with O_{2} affords corresponding alkyl radical, and finally hydroperoxide. ${ }^{8}$ We observed that the reaction of sodium benzyloxide with C_{60} proceeded much slower when oxygen was partially excluded from the reaction mixture. Hence, oxygen must be involved in the reaction. A possible mechanism for the reaction is outlined

1
Scheme 1

in Scheme 2. It seems that the carbanion 2 reacts with O_{2} much faster than it undergoes protonation. Another possible mechanism is that C_{60} reacts with $\mathrm{PhCH}_{2} \mathrm{ONa}$ by electron transfer to give [60]fullerene radical anion and benzyloxy radical. ${ }^{6}$ The benzyloxy radical then adds to C_{60} to give the intermediate 3 .

We have also conducted the reaction of C_{60} with $\mathrm{NaOEt}-$ EtOH using the same method. The reaction was faster than that with $\mathrm{PhCH}_{2} \mathrm{ONa}-\mathrm{PhCH}_{2} \mathrm{OH}$. An ethoxide- C_{60} adduct was isolated, which was pure by TLC and HPLC. The FTIR and UV-VIS spectra of the adduct showed that the fullerene cage remained unchanged. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the ethoxide- C_{60} adduct were complex, and its assignment is underway.

We appreciate financial support of the Science and Technology Commission of Shanghai Municipality and National Natural Science Foundation of China. We thank also Professor Maitland Jones Jr. of Princeton University for his helpful discussion.

Received, 5th January 1995; Com. 5/00096C

References

1 A. Hirsch, Angew. Chem., Int. Ed. Engl., 1993, 32, 1138; R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685.

2 A. Hirsch, T. Grosser, A. Skiebe and A. Soi, Chem. Ber., 1993, 126, 1061; H. Nagashima, H. Terasaki, E. Kimura, K. Nakajima and K. Itoh, J. Org. Chem., 1994, 59, 1246; H. L. Anderson, R. Faust, Y. Rubin and F. Diederich, Angew. Chem., Int. Ed. Engl., 1994, 33, 1366.

3 G. P. Miller, J. M. Millar, B. Liang, S. Uldrich and J. E. Johnston, J. Chem. Soc., Chem. Commun., 1993, 897; K.-D. Kampe, N. Egger and M. Vogel, Angew. Chem., Int. Ed. Engl., 1993, 32, 1174; S. N. Davey,
D. A. Leigh, A. E. Moody, L. W. Tetler and F. A. Wade, J. Chem. Soc., Chem. Commun., 1994, 397.
4 A. Naim and P. B. Shevlin, Tetrahedron Lett., 1992, 33, 7097; J. Li, A. Takeuchi, M. Ozawa, X. Li, K. Saigo and K. Kitazawa, J. Chem. Soc., Chem. Commun., 1993, 1784.
5 G. A. Olah, I. Bucsi, C. Lambert, R. Aniszfeld, N. J. Trivedi, D. K. Sensharma and G. K. S. Prakash, J. Am. Chem. Soc., 1991, 113, 9385.

6 S. R. Wilson and Y. Wu, J. Am. Chem. Soc., 1993, 115, 10334
7 Y. Elemes, S. K. Silverman, C. Sheu, M. Kao, C. S. Foote, M. M. Alvarez and R. L. Whetten, Angew. Chem., Int. Ed. Engl., 1992, 31, 351.

8 R. D. Guthrie, Stud. Org. Chem. (Amsterdam), 1980, 5 (Compr. Carbanion Chem., Pt. A), 197.

Footnotes

\dagger Spectral data for 1: $R_{\mathrm{f}}=0.28\left(\mathrm{SiO}_{2}, \mathrm{n}\right.$-hexane : toluene, $\left.5: 1\right)$. $\mathrm{FD}-\mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) 842 (100), 720 (21). FT-IR (KBr) $\mathrm{v} / \mathrm{cm}^{-1} 3033,2918,2853,1625$, 1459, 1425 (C_{60}), 1400, 1219, 1181 (C_{60}), 1153, 1401, 1081, 1059, 1050, $1034,1025,1003,784,694,575\left(\mathrm{C}_{60}\right), 562,553,525\left(\mathrm{C}_{60}\right), 478$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max } / \mathrm{nm} 227,253,315 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CS}_{2}-\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 8.00\left(\mathrm{~d}, J 6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, arom. H), $7.54\left(\mathrm{~m}, 3 \mathrm{H}\right.$, arom. H), $7.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CS}_{2}-\mathrm{CDCl}_{3}$ with $\mathrm{Cr}(\mathrm{acac})_{3}$ as relaxation reagent) δ (number of carbon atoms) 148.40 (2), 148.12 (2), 147.71 (2), 146.62 (4), 146.47 (2), 146.39 (2), 146.34 (2), 146.30 (2), 145.55 (1), 145.44 (2), 145.29 (2), 145.26 (2), 145.17 (1), 145.00 (2), 144.94 (2), 144.73 (2), 143.23 (1), 142.94 (2), 142.88 (2), 142.78 (1), 142.50 (2), 142.48 (2), 142.41 (2), 142.38 (2), 142.27 (2), 141.73 (2), 139.95 (2), 139.78 (2), 138.79 (2), 138.52 (2), 134.80 (1, quart. arom. C), 130.57 (1, arom. CH), 128.93 (2, arom. CH), 127.93 (2, arom. CH), 103.25 (1, acetal C), $94.39\left(2, \mathrm{sp}^{3}-\mathrm{C}\right.$ of $\left.\mathrm{C}_{60}\right)$.

