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Oxidative Cleavage of the Te-Te Bond in q2-Ditellurido Complexes: Syntheses and 
Structures of M(PMe3)4(q*-Te2)H2 (M = Mo, W) 
Vincent J. Murphy, Daniel Rabinovich, Shannon Halkyard and Gerard Parkin" 
Department of Chemistry, Columbia University, New York, New York 10027, USA 

The q2-ditellurido derivatives, M(PMe3)4(q2-Te2)H2 (M = Mo, W) are synthesized by the reactions of M(PMe3)5H2 with 
elemental tellurium; the conversion of M(PMe3)4(q2-Te2)H2 to the terminal tellurido complexes M(PMe3)4(Te)2 
provides an unprecedented example of a transformation that involves oxidative cleavage of a ditellurido ligand at a 
single metal centre. 

The coupling and cleavage of ligands at a single transition metal 
centre represent a class of fundamental transformations in 
organometallic chemistry. Depending upon the valence nature 
of both (a )  the ligands to be coupled and (b) the coupled ligand 
in the product, the coupling reaction may be regarded as either 
reductive, redox-neutral or oxidative, with respect to the metal.1 
Coupling and cleavage reactions may play an active role in a 
variety of important transformations,l ,2 including those involv- 
ing chalcogenido ligands. However, in spite of the potential 
importance of reactions involving the interconversion of 
[M](E)2 and [M](q2-E2) moieties (E = 0, S, Se, Te), relatively 
few well-characterized examples of such transformations have 
been described. Here we extend our studies of transition metal 
tellurido chemistry with the report of transformations that 
involve the formal oxidative cleavage of a ditellurido ligand at 
a single metal centre. 

We have recently described the first example of the reductive 
coupling of two terminal tellurido ligands to give the ditellurido 
complex W(PMe3)(CNBut)4(q2-Te2).3 To date, however, we 
have not observed any subsequent reactivity of W(PMe3)(CN- 
B~t)~(q2-Te~) deriving from the reverse reaction, namely the 
oxidative cleavage of the q2-ditellurido ligand. Nevertheless, 
since the interconversion between [M](q2-Te2) and [M](Te)2 
moieties is likely to be sensitive to the nature of the metal centre, 
we have sought to synthesize additional q2-ditellurido com- 
plexes, with the prospect that they may be more susceptible to 
oxidative cleavage. In this regard, we have discovered that the 
q2-ditellurido complexes M(PMe3)4(r2-Te2)H2 (M = Mo, W) 
may be synthesized in good yield by the reactions of 
M(PMe3)5H24 with elemental tellurium (Scheme l).? The 
molecular structures of M(PMe3)4(q2-Te2)H2 (M = Mo, W) 
have been determined by X-ray diffraction, an ORTEP diagram 
for Mo(PMe3)4(q2-TeZ)H2 is shown in Fig. l.$ The two 
complexes are isostructural with similar M-Te and Te-Te bond 
lengths (Table 1). The structural details of the [W(q2-Te2)] 
moiety in W(PMe3)4(q2=Te2)H2 are also similar to those in 
W(PMe3)(CNBut)4(y2-Te2).3 The M-Te bond lengths in these 
q2-ditellurido complexes fall within the range of other M-Te 
single bonds,5 but are substantially longer than the corre- 
sponding multiple bonds in M(PMe3)4(Te)2 [Mo = Te 2.597( 1); 
W = Te 2.596( 1) A1.6 The Te-Te bond lengths in M(PMe3)4(q2- 
Te2)H2 are also comparable to the values reported for other 
mononuclear ditellurido complexes (2.67-2.69 A) such as 
{ q3-PhP(CH2CH2PPh2)2}Ni(q2-Te2) [2.$68( 1) A], { q3- 
MeC(CH2PPh2)3 } Ni(q2-Te2) [ 2.665 (2) A] ,7 W(PMe3)(CN- 
B~t )~ (qz -Te~)  [2.680(2) A],3 (CSMe&Ta(q2-Te2)H [2.678(2) 
A]s and (C5Me5)2Zr(q2-Te2)(CO) [2.69(2) A1.9 The hydride 
ligands in M(PMe3)4(q2-Te2)H2 were also located by the X-ray 
diffraction studies, and their presence is strongly supported by 
the observation of appropriate signals in the lH NMR (6Mo 

-4.73,6w -3.94) and IR (YM-H = 1855, YW-H = 1900 cm-l) 
spectra. 8 

Importantly, the reactivity of the ditellurido complexes 
M(PMe3)4(q2-Te2)H2 furnishes good evidence for the unpre- 
cedented oxidative cleavage of the ditellurido ligand to give a 
bis(tel1urido) complex. Specifically, solutions of M(PMe3)4(q2- 
Te2)H2 eliminate H2 to give, inter ulia, the terminal tellurido 
complexes M(PMe3)4(Te)z.l Although the mechanism by 
which M(PMe3)4(q2-Te2)H2 converts to M(PMe3)4(Te)2 is 
unknown, the oxidative cleavage of the ditellurido ligand may 
be conceptually considered to occur within a 16-electron 
intermediate of the types [M(PMe3)4(q2-Te2)] or 
[M(PMe3)3(q2-Te2)H2]. Indeed, for the molybdenum system, 
preliminary studies indicate that the decomposition of Mo- 
(PMe3)4(q2-Te2)H2 is inhibited by the addition of PMe3, so that 
a mechanism involving initial dissociation of PMe3 may 
operate. For this reason, the presence of PMe3 is critical in the 
preparation of Mo(PMe3)4(q2-Te2)H2. 

The observation of both reductive coupling and oxidative 
cleavage reactions in these molybdenum and tungsten systems 
is of relevance since well-defined examples of such trans- 
formations involving chalcogenido ligands are uncommon. 
Indeed, such reactions do not generally appear to be kinetically 
facile. For example, the valence isomers (q2-Et2NCS2)2Mo(q2- 
ONPh) and (q2-Et2NCS2),Mo(0)(NPh) do not interconvert 
under either thermal or photochemical conditions. lo Similarly, 
evidence has been presented to suggest that the proposed peroxo 

Fig. 1 ORTEP drawing for Mo(PMe&(q2-Te2)H2 

Table 1 Bond lengths of [M(r2-Te2)] moieties (M = Mo, W) 

M = M o , W  

Scheme 1 

Me3P.. 17 ,_ PMe3 

-HZ Me3P'I I 'PMe3 
Te 

___) ..M' 

Compound M-TeIA Te-TelA Ref. 

Mo(PMe3)4(q2-Te2)H2 2.861(1), 2.698(1) This work 

W(PMe3)4(q2-Te2)H2 2.856(2), 2.697(2) This work 

W(PMe3)(CNB~t)4(q2-Te2) 2.868(2), 2.680(2) 3 

2.899(1) 

2.903(2) 

2.877( 2) 
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intermediate { [Tp]Re(O)(q2-02> } does not simply rearrange to 
the trioxo complex [ T ~ l R e ( 0 ) ~ ,  but that a more complicated 
bimolecular pathway is responsible for its ultimate formation 
([Tpl = ~ V I B P Z ~ ) . ~  Nevertheless, pathways that involve 
oxidative cleavage and reductive coupling have been postulated 
for several other systems. For example, the reductive coupling 
of two sulfido ligands may be considered as a possible sequence 
in several reactions of thiometallate derivatives,12-16 such as (a )  
the RSSR induced conversion of [Mo(S),]2- to [(q2- 
S , ) ( S ) M O ( ~ - S ) ] ~ ~ - , ~ ~  and (b)  the formation of W(0)(q2- 
S2)2(bipy) by reaction of [W(S),]2- with aqueous HCl in the 
presence of bipy. 18 Similarly, oxidative cleavage and reductive 
coupling reactions involving 0x0 ligands include (a)  the 
photochemical conversion of (TPP)Mo(q2-02)2 to cis- 
(TPP)MO(O)~, 19 and (b)  the photoinduced decomposition of 
{Mn(0),]-.20 

In summary, the mononuclear molybdenum and tungsten q2- 
ditellurido complexes M(PMe3)4(q.2-Te2)H2 (M = Mo, W) 
have been synthesized by the reactions of M(PMe&H2 with 
elemental tellurium. The conversions of M(PMe3)4(q2-Te2)H2 
to M(PMe3),(Te)2 provide interesting and unprecedented 
examples of transformations that involve the oxidative cleavage 
of a ditellurido ligand at a single metal centre. As such, the 
transformations provide a valuable complement to our previous 
observation of the microscopic reverse, i.e. the reductive 
coupling of two tellurido ligands. Hence, by varying the ligand 
array about a metal centre, the relative favourabilities of 
[M](q2-Te2) vs. [M](Te)2 moieties may be strongly influ- 
enced. 
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Footnotes 
t Synthesis of Mo(PMe&(q2-Te2)H2: a solution of Mo(PMe&H2 (1 .00 g, 
2.1 mmol) in benzene (25 ml) was treated with tellurium powder (0.54 g, 4.2 
mmol) and PMe3 (ca. 0.5 ml, 4.9 mmol) at -78 "C. The mixture was 
allowed to warm to room temp. and stirred for 40 min, producing a dark 
brown solution. The volatile components were removed under reduced 
pressure and the residue was extracted into toluene (ca. 40 ml) and 
concentrated to ca. 20 ml. Pentane (ca. 5 ml) was added and the solution 
placed at -78 "C, giving black microcrystals of Mo(PMe3)4(q2-Te2)H2 
(0.50 g). A further crop of crystals was obtained by concentrating and 
cooling the supernatant solution to give a combined yield of 0.82 g (60%). 
The tungsten complex W(PMe3)4(q2-Te2)H2 was prepared by an analogous 
procedure, but in the absence of PMe3. 
3 Crystal datu for C,2H38M~P4Te2: monoclinic, P21/n (no. 14), a = 
9.623(2), 11 = 15.297(3), c = 16.504(2) A, 0 = 98.31(2)", V = 2403(1) A3, 
Z = 4, R = 0.0275, R ,  = 0.0392. For C12H38P4Te2W: monoclinic, P2,/n 
(no. 14), a = 9.603(2), b = 15.276(5), c = 16.476(3) A, 0 = 98.12(1)", V 
= 2400( 1) A3, Z = 4, R = 0.0522, R,  = 0.0522. Atomic coordinates, bond 
lengths and angles, and thermal parameters have been deposited at the 
Cambridge Crystallographic Data Centre. See Information for Authors, 
Issue No. 1. 
!$ The y2-ditellurido moieties of M(PMe3)4(q2-Te2)H2 have also been 
characterized by 125Te NMR spectroscopy [a,, -696, 6w -8841 and the 
resonances are shifted Eignificantly upfield from the corresponding values 
for the related terminal tellurido derivatives M(PMe3)4(Te)2 [a,, 1 5 0 7 , 6 ~  
9581.6 

7 W(PMe3)4(Te)2 is obtained in ca. 35% yield by heating M(PMe&(q2- 
Te2)H2 at 55 "C for 4 h. The molybdenum analogue is considerably less 
stable and decomposes over a period of 1 h at 40 "C to give M O ( P M ~ ~ ) ~ ( T ~ ) ~  
(ca. 15%) and other unidentified products. 
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