Fast Synthesis of Amino Acid Salts and Lactams without Solvent under Microwave Irradiation

Alain Laurent,^a Patrick Jacquault,^b Jean-Louis Di Martino^b and Jack Hamelin*^a

^a Groupe de Physicochimie Structurale 3, CNRS, URA 704, Université de Rennes, Campus de Beaulieu, 35042 Rennes, France

^b Prolabo, 54 rue Roger Salengro, 94126 Fontenay sous Bois Cedex, France

Hydroxylamine-O-sulfonic acid reacts with alicyclic ketones over SiO₂ under microwave irradiation to give an amino acid salt, which cyclises in high yield to the corresponding lactam after work up in basic medium.

In 1979, Olah¹ reported a one-step conversion of alicyclic ketones into lactams with hydroxylamine-*O*-sulfonic acid (HOSA) and formic acid under reflux. He suggested that the reaction proceeds through a non-isolated *O*-sulfonic oxime, which decomposes to an oxime and sulfuric acid promoting the Beckmann rearrangement to the lactam. More recently, Sato² catalysed the rearrangement of oximes by the combined use of tetrabutylammonium perrhenate(VII), trifluoromethane sulfonic acid and hydroxylamine hydrochloride at reflux in MeNO₂.

In connection with our studies related to the condensation of carbonyl compounds with amines, in heterogeneous media under microwave irradiation,^{3–5} we report now a new procedure for a fast and efficient synthesis of amino acid salts or the corresponding lactams according to the following mechanism exemplified for cyclohexanone (Scheme 1).

Typical procedure: cyclohexanone 1 (2.5 mmol) and HOSA 2 (1.2 equiv.) are adsorbed over SiO_2 (2 g). After leaving to

Table 1

Ketone	Lactam 5	Irradiation time ^a /min	Yield (%) ^b
Cyclopentanone	Valerolactam	15	60
Cyclohexanone	Caprolactam	10	86
Cycloheptanone	2-Azacyclooctanone	20	72
Cyclooctanone	2-Azacyclononanone	15	65
Cycloundecanone	2-Azacyclododecanone	15	72
Cyclododecanone	2-Azacyclotridecanone	20	82

^{*a*} Irradiation at 30 W, the temperatures reached by the reaction mixture are in the range of 100 to 120 °C. ^{*b*} All lactams are known compounds, identified by physical properties and ¹H, ¹³C NMR spectroscopy. stand for 2 h at room temp., H_2O (1 equiv.) is added and the mixture is irradiated in a focused microwave oven (PROLABO MX 350)⁶ for 10 min at 30 W. Extraction with acetone and evaporation after drying lead to a quantitative yield of ε -amino caproic acid salt **6**. Neutralization of the aqueous solution of **6** (NaOH) and extraction (CH₂Cl₂) lead to crystalline caprolactam **5** in 86% yield.

The mechanism in Scheme 1 was established by the following experiments.

Cyclohexanone and HOSA are mixed with anhydrous MgSO₄. Extraction with acetone and evaporation gave 3, characterized by ¹H, ¹³C NMR and HRMS. As expected, 3 is the primary product of the reaction, isolated for the first time. Over SiO_2 in the presence of the condensation water, 3 gives oxime 4 together with H_2SO_4 . This second step is demonstrated in the following way: cyclohexanone and HOSA are absorbed over SiO₂ and after 2 h at room temp. the mixture is extracted with acetone to give, after evaporation, a nearly quantitative yield of the oxime $\overline{4}$ together with traces of 3 and $\overline{6}$. This experiment points out the need of thermal activation to promote Beckmann rearrangement. In the presence of H₂SO₄ and under microwave irradiation, 4 rearranges to 5 which in the reaction conditions hydrolyses to 6. The following experiment accounts for this last step: irradiation at 30 W during 10 min of pure caprolactam 5 adsorbed over SiO₂ with H₂SO₄ and H₂O affords a quantitative yield of 6. The addition of H_2O (1 equiv.) before irradiation is necessary because 2 equivs. are required, one for transposition and one for hydrolysis of the lactam. Without this addition of water only 50% yield of 6 is obtained.

This technique was further extended to other alicyclic ketones to prepare the corresponding lactams in good yields as reported in Table 1.

Received, 27th February; 1995; Com. 5/01178G

References

- 1 G. A. Olah and A. P. Fung, Synthesis, 1979, 437.
- 2 K. Narazaka, H. Kusama, Y. Yamashita and H. Sato, *Chem. Lett.*, 1993, 489.
- 3 J. F. Pilard, B. Klein, F. Texier-Boullet and J. Hamelin, Synlett, 1992, 219.
- 4 B. Rechsteiner, F. Texier-Boullet and J. Hamelin, *Tetrahedron Lett.*, 1993, 34, 5071.
- 5 P. Ruault, J. F. Pilard, B. Touaux, F. Texier-Boullet and J. Hamelin, *Synlett*, 1994, 935.
- 6 R. Coumarnot, R. Diderot, J. F. Gardais, Rhône-Poulenc/Prolabo Patent number 84/03496, October 27th 1986. Apparatus commercialized by Prolabo under the name Maxidigest MX 350.