Fast Synthesis of Amino Acid Salts and Lactams without Solvent under Microwave Irradiation

Alain Laurent, a Patrick Jacquault, ${ }^{\text {b }}$ Jean-Louis Di Martino ${ }^{\text {b }}$ and Jack Hamelin*a
a Groupe de Physicochimie Structurale 3, CNRS, URA 704, Université de Rennes, Campus de Beaulieu, 35042 Rennes, France
${ }^{\text {b }}$ Prolabo, 54 rue Roger Salengro, 94126 Fontenay sous Bois Cedex, France

Hydroxylamine-O-sulfonic acid reacts with alicyclic ketones over SiO_{2} under microwave irradiation to give an amino acid salt, which cyclises in high yield to the corresponding lactam after work up in basic medium.

In 1979, Olah ${ }^{1}$ reported a one-step conversion of alicyclic ketones into lactams with hydroxylamine- O-sulfonic acid (HOSA) and formic acid under reflux. He suggested that the reaction proceeds through a non-isolated O-sulfonic oxime, which decomposes to an oxime and sulfuric acid promoting the Beckmann rearrangement to the lactam. More recently, Sato ${ }^{2}$ catalysed the rearrangement of oximes by the combined use of tetrabutylammonium perrhenate(viI), trifluoromethane sulfonic acid and hydroxylamine hydrochloride at reflux in MeNO_{2}.

In connection with our studies related to the condensation of carbonyl compounds with amines, in heterogeneous media under microwave irradiation, ${ }^{3-5}$ we report now a new procedure for a fast and efficient synthesis of amino acid salts or the corresponding lactams according to the following mechanism exemplified for cyclohexanone (Scheme 1).

Typical procedure: cyclohexanone $1(2.5 \mathrm{mmol})$ and HOSA 2 (1.2 equiv.) are adsorbed over $\mathrm{SiO}_{2}(2 \mathrm{~g})$. After leaving to

Scheme 1

Table 1

Ketone	Lactam 5	Irradiation time 5 $/$ min	Yield $(\%)^{b}$
Cyclopentanone	Valerolactam	15	60
Cyclohexanone	Caprolactam	10	86
Cycloheptanone	2-Azacyclooctanone	20	72
Cyclooctanone	2-Azacyclononanone	15	65
Cycloundecanone	2-Azacyclododecanone	15	72
Cyclododecanone	2-Azacyclotridecanone	20	82

${ }^{a}$ Irradiation at 30 W , the temperatures reached by the reaction mixture are in the range of 100 to $120^{\circ} \mathrm{C}$. ${ }^{b}$ All lactams are known compounds, identified by physical properties and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectroscopy.
stand for 2 h at room temp., $\mathrm{H}_{2} \mathrm{O}$ (1 equiv.) is added and the mixture is irradiated in a focused microwave oven (PROLABO MX 350$)^{6}$ for 10 min at 30 W . Extraction with acetone and evaporation after drying lead to a quantitative yield of ε-amino caproic acid salt 6 . Neutralization of the aqueous solution of 6 (NaOH) and extraction $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ lead to crystalline caprolactam 5 in 86% yield.

The mechanism in Scheme 1 was established by the following experiments.

Cyclohexanone and HOSA are mixed with anhydrous MgSO_{4}. Extraction with acetone and evaporation gave 3, characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS. As expected, $\mathbf{3}$ is the primary product of the reaction, isolated for the first time. Over SiO_{2} in the presence of the condensation water, $\mathbf{3}$ gives oxime 4 together with $\mathrm{H}_{2} \mathrm{SO}_{4}$. This second step is demonstrated in the following way: cyclohexanone and HOSA are absorbed over SiO_{2} and after 2 h at room temp. the mixture is extracted with acetone to give, after evaporation, a nearly quantitative yield of the oxime 4 together with traces of 3 and 6 . This experiment points out the need of thermal activation to promote Beckmann rearrangement. In the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and under microwave irradiation, 4 rearranges to 5 which in the reaction conditions hydrolyses to 6 . The following experiment accounts for this last step: irradiation at 30 W during 10 min of pure caprolactam 5 adsorbed over SiO_{2} with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ affords a quantitative yield of 6 . The addition of $\mathrm{H}_{2} \mathrm{O}$ (1 equiv.) before irradiation is necessary because 2 equivs. are required, one for transposition and one for hydrolysis of the lactam. Without this addition of water only 50% yield of 6 is obtained.

This technique was further extended to other alicyclic ketones to prepare the corresponding lactams in good yields as reported in Table 1.

Received, 27th February; 1995; Com. 5/01178G

References

1 G. A. Olah and A. P. Fung, Synthesis, 1979, 437.
2 K. Narazaka, H. Kusama, Y. Yamashita and H. Sato, Chem. Lett., 1993, 489.

3 J. F. Pilard, B. Klein, F. Texier-Boullet and J. Hamelin, Synlett, 1992, 219.

4 B. Rechsteiner, F. Texier-Boullet and J. Hamelin, Tetrahedron Lett., 1993, 34, 5071.
5 P. Ruault, J. F. Pilard, B. Touaux, F. Texier-Boullet and J. Hamelin, Synlett, 1994, 935.
6 R. Coumarnot, R. Diderot, J. F. Gardais, Rhône-Poulenc/Prolabo Patent number $84 / 03496$, October 27th 1986. Apparatus commercialized by Prolabo under the name Maxidigest MX 350.

