Competing Pathways in the Photolytic Cycloaddition Reactions of *N*-Ethoxycarbonylazepine to [60]Fullerene: Formation of [2 + 4] and [2 + 6] Photoadducts

Malcolm R. Banks,^a J. I. G. Cadogan,^b Ian Gosney,^a Philip K. G. Hodgson,^c Patrick R. R. Langridge-Smith,^a John R. A. Millar,^a John A. Parkinson,^a Ian H. Sadler^a and Alan T. Taylor^a

^a Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JJ ^b Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK SW7 2AY

° BP International Ltd., Research and Engineering Centre, Chertsey Road, Sunbury-on-Thames, Middlesex, UK TW16 7LN

The photochemical reaction between [60]fullerene and *N*-ethoxycarbonylazepine, formed *in situ* by light-induced decomposition of ethyl azidoformate in benzene, produces two photoadducts in the ratio of 4:1 by formal [2 + 4] and[2 + 6] cycloaddition reactions as established by a series of high-field (600 MHz) NMR experiments.

Although a plethora of methods now exist for the monofunctionalisation of [60] fullerene (C_{60}) via thermal cycloaddition reactions,¹ photochemical derivatisation of C_{60} is still in its infancy. Reports so far include photo-epoxidation,² [2 + 1] photocycloaddition reaction with nitrenes derived from Nsuccinimidyl-4-azido-2.3.5.6-tetrafluorobenzoate³ and aroylazides,⁴ [2 + 2] photocycloaddition reaction with enones⁵ and *N*,*N*-diethylpropynylamine,⁶ [2 + 3] photocycloaddition reactions with 2,3-diphenyl-2*H*-azirine⁷ and 1,1,2,2-tetramesityl-1,2-disilirane.⁸ In all cases, functionalisation occurs at a 6,6-ring junction in C_{60} , which in the photoexcited state is a much stronger electron acceptor and serves as an ene or dienophile. We now report the first examples of photoderivatisation of C_{60} by formal [2 + 4] and [2 + 6] cycloaddition reactions with N-ethoxycarbonylazepine, which is generated in situ by photolytic decomposition of ethyl azidoformate in benzene.

We have already established that in addition to the expected formation of closed [6,6]fulleroaziridines **1** by reaction of C_{60} with singlet oxycarbonylnitrenes,⁹ *e.g.* EtO₂CN:, small amounts (*ca.* 10%) of unanticipated closed 5,6-adducts **2** were obtained, apparently by trapping of triplet nitrenes in a diradical manner.¹⁰ In an effort to investigate this conjecture further, photolytic experiments were undertaken in various solvents, and in particular benzene with divergent results. Thus, irradiation (400 W medium pressure mercury lamp, quartz reactor) of a mixture of C₆₀ (1 equiv.) and ethyl azidoformate (5 equiv.) in either dichloromethane (DCM) or 1,1,2,2-tetrachloroethane led to the immediate formation of an intractable brown solid, whereas in benzene, slow consumption of C₆₀ occurred to produce a 4:1 mixture of two major products (70%),† which was easily separated by flash chromatography (n-hexanetoluene, n-hexane-diethyl ether). FAB-MS analysis showed that the two products were isomeric [major $(M^+ + 1)$ 886.08650, minor $(M^+ + 1)$ 886.07837; C₆₉H₁₂NO₂ requires 886.08680] and corresponded to an adduct of C_{60} combined with benzene and photolytically generated ethoxycarbonylnitrene. Control experiments established that reaction had proceeded by capture of the nitrene by benzene to produce N-ethoxycarbonylazepine 3, which then underwent further photoreaction with C_{60} by two competing pathways to form the isomeric adducts. photogenesis of these adducts was established when azepine 3 was found to be thermally unreactive towards C_{60} upon heating in benzene under reflux for 3 h in the dark. By contrast, photolysis of 3 in the presence of C_{60} in benzene produced the same reaction mixture as obtained in the initial experiment.

The structures of the major and minor photoadducts were elucidated by a series of high-field NMR experiments, which established unequivocally that their origin resulted from formal [2 + 4] and [2 + 6] cycloaddition reactions of **3** to C₆₀, respectively. In the case of the major [2 + 4] photoadduct **4**, the one-dimensional ¹H NMR spectrum (600 MHz) showed six pairs of signals in the δ 4–8 region as follows: overlapping triplets at δ 4.21, triplets at δ 5.51 (major) and 5.64, doublets at δ 6.52 and 6.68 (major) overlapping triplets at δ 7.25 (major) and 7.35, overlapping triplets at δ 7.50. In each

case saturation of one of the members of a resolved pair resulted in saturation transfer to the other, indicating exchange between two conformers or isomers. A two-dimensional HMQC¹¹ carbon-proton correlation experiment showed that the protons resonating at δ 4.21 (two), 6.52 and 6.68 are bonded to sp³hybridised carbon atoms at δ 44.7/44.9, 58.2 and 58.8, respectively; the remaining protons being bonded to alkene carbon atoms. Proton spin-decoupling experiments confirmed that the protons constitute a linear spin system in which two alkene units are separated by an sp³-hybridised carbon atom. Above 60 °C the pairs of proton signals coalesced to show sharp doublets or triplets as expected. The ¹³C NMR spectrum (62.5 MHz) also exhibited signals at δ 71.5 and 69.7, which were assigned to sp³ carbon atoms of the fullerene sphere, along with 35 (out of 60) resolved lines in the δ 135–155 region for the fullerene sphere. Resonances due to the alkene portion of 4 were observed at δ 139.0, 127.0, 124.5 and 108.7 whilst the Nethoxycarbonyl moiety had resonances at δ 14.3, 62.6 and 153.7; both of these sets of signals occurred as major/minor pairs. The FT-IR spectrum (KBr) exhibited bands at 1704 (C=O), 1647 (C=C), 1323, 1254, 725 and 526 (fullerene) cm⁻¹. The UV-VIS spectrum (DCM) of 4 exhibited a maximum at 309 nm accompanied by shoulders at 415 and 435 nm.

For the minor [2 + 6] photoadduct 5, more elaborate NMR experiments were required to determine its structure. Thus, in addition to the methyl (δ 1.48), and diastereotopic methylene (δ 4.41 and 4.44) resonances, the one-dimensional ¹H NMR spectrum (600 MHz) showed a two-proton multiplet centred at δ 6.31, similar in appearance to one portion of an [AX]₂ spectrum, a one-proton doublet at δ 6.36 showing a further long-range coupling, and a complex pattern, integrating for three protons, in the range δ 6.40–6.48. A saturation difference experiment with irradiation at δ 6.36 revealed a similar doublet at δ 6.43. A two-dimensional HMQC¹¹ carbon-proton correlation experiment showed that these two protons are bonded to sp³-hybridised carbon atoms at δ 67.5 and 67.7, respectively, the remaining four protons being bonded to alkene carbon atoms at δ 137.1, 136.6, 125.4 and 125.1. Examination of the two-dimensional proton DQFCOSY12 spectrum located the remaining two protons at δ 6.42 and 6.46 and confirmed the shift of the other four protons. The three-bond coupling cross peaks showed that the protons constitute a linear spin system which terminates with protons bonded to sp3-hybridised carbon atoms. The exchange of the terminal protons arises from the rotation about the N-CO₂Et bond which is slow on the NMR time-scale at the temperature (25 °C) at which the spectra were obtained. Hence the symmetry expected in a fast exchange situation, which occurs at a temperature higher than could be made on this sample, is not observed. Owing to its C_i symmetry, the ¹³C NMR spectrum (62.5 MHz) of photoadduct 5 showed two fullerene carbon sp³ resonances at δ 81.5 and 80.4, along with 43 (of 60) resolved peaks between δ 134.2 and 153.6, the *N*-ethoxycarbonyl moiety also showed resonances at δ 14.6, 61.91 and 153.1. The FT-IR spectrum (KBr) displayed major absorbances at 1705 (C=O), 1509, 1316, 1262, 717 and 525 (fullerene) cm⁻¹. The UV–VIS spectrum (DCM) of 5 showed maxima at 303 and 426 nm. The sharp but weak feature at 426 nm is characteristic of 6,6-substituted fullerenes.^{2,4,6,8,9}

From a mechanistic viewpoint, an explanation for the previously unobserved modes of photo-induced addition to azepine 3 is that the process involves reaction with the photoexcited (triplet) state¹³ of C₆₀. The involvement of diradical intermediates such as **6a–c** can be visualised in which delocalisation as indicated accounts for the preferred formation of photoadduct 4 over photoadduct 5. We failed to detect the formation of [2 + 2] photoadduct 7, presumably owing to a combination of two factors. Firstly, of the three diradical intermediates **6a–c** proposed, the one that would result in a [2 + 2] photoadduct, *i.e.* **6c**, is the least stable, and secondly, formation of a four-membered ring is energetically less favourable than the larger rings formed in the observed alternative products, **4** and **5**.

Received, 15th March 1995; Com. 5/01668A

Footnote

[†] Analysis of the crude reaction mixture by HPLC (FullereneSep[®], 2 ml min⁻¹, 7% ethyl acetate–*n*-hexane, 258 nm)¹⁴ also established the concomitant formation of small amounts of [6,6]fulleroaziridine 1 (3%); when the C₆₀:ethyl azidoformate ratio was changed to 1:60, [5,6]fulleroaziridine 2 (*ca.* 1%) was also detected.

References

- 1 A. Hirsch, *The Chemistry of the Fullerenes*, Georg Thieme Verlag, Stuttgart, 1994, p. 80.
- 2 K. M. Creegan, J. L. Robbins, W. K. Robbins, J. M. Millar, R. D. Sherwood, P. J. Tindall, D. M. Cox, A. B. Smith, III, J. P. McCauley, Jr., D. R. Rose and R. T. Gallagher, J. Am. Chem. Soc., 1992, **114**, 1103.
- 3 M. Yan, S. X. Cai and J. F. W. Keana, J. Org. Chem., 1994, 59, 5951.
- 4 J. Averdung, J. Mattay, D. Jacobi and W. Abraham, *Tetrahedron*, 1995, **51**, 2543.
- 5 S. R. Wilson, N. Kaprinidis, Y. Wu and D. I. Schuster, J. Am. Chem. Soc., 1993, 115, 8495.
- 6 X. Zhang, A. Romero and C. S. Foote, J. Am. Chem. Soc., 1993, 115, 11024.
- 7 J. Averdung, E. Albrecht, J. Lauterwein, H. Luftmann, J. Mattay, H. Mohn, W. H. Müller and H-U ter Meer, *Chem. Ber.*, 1994, **127**, 787.
- 8 T. Akasaka, W. Ando, K. Kobayashi and S. Nagase, J. Am. Chem. Soc., 1993, 115, 1605, 10366.
- 9 M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith and D. W. H. Rankin, *J. Chem. Soc., Chem. Commun.*, 1994, 1365; M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-Smith, J. R. A. Millar and A. T. Taylor, *Tetrahedron Lett.*, 1994, **35**, 9067.
- 10 M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, J. R. A. Millar, P. R. R. Langridge-Smith, D. W. H. Rankin and A. T. Taylor, J. Chem. Soc., Chem. Commun., 1995, 887.
- 11 U. Piantini, O. W. Sorenson and R. R. Ernst, J. Am. Chem. Soc., 1982, 104, 6800.
- 12 M. F. Summers, L. G. Marzilli and A. Bax, J. Am. Chem. Soc., 1986, 108, 4285.
- 13 J. W. Arbogast, C. S. Foote and M. Kao, *J. Am. Chem. Soc.*, 1992, **114**, 2277; J. W. Arbogast, A. O. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alverez, S. J. Anz and R. L. Whetton, *J. Phys. Chem.*, 1991, **95**, 11.
- 14 M. R. Banks, I. Gosney, A. C. Jones, D. S. Jones, P. R. R. Langridge-Smith, R. J. McQuillan and P. Thorburn, *Chromatographia*, 1993, 35, 631.