Carbon-Carbon Activation by Rhodium in Solution; sp²-sp³ is Preferred Over sp³-sp³ **Bond Cleavage**

Shyh-Yeon Liou, Michael Gozin and David Milstein"

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel

Reaction of the ethyl-aromatic phosphine 1 with PhRh(PPh₃)₃ results in C-H activation, yielding complex 2, which upon treatment with H₂ undergoes selective cleavage of the sp²-sp³ hybridized C-C bond forming ethane and complex **3;** Ar-C cleavage is also observed upon reaction of **1** with H₂ and [RhCI(C₈H₁₄)₂]₂.

Activation of carbon-carbon single bonds by transition metal complexes in solution is a topic of considerable current interest. l-7 C-C Bonds are normally unreactive towards metal complex insertion, except when activated by strain, $1,2$ by a functional group, such as a carbony $1^{3,4}$ or by the drive to aromaticity in pre-aromatic systems^{1,5}

Following our recent findings of Rh^I insertion into a strong aryl-methyl bond in solution⁷ and its use in methylene transfer chemistry,⁷ we now address the question of sp^2 -sp³ vs sp^3 -sp³ hybridised C-C bond cleavage. For this purpose, the aromatic phosphine **1** was synthesised from 2-bromo-m-xylene by lithiation, coupling with ethyl bromide, bromination and coupling with $Ph₂PLi$.

Upon reaction of 1 with $PhRh(PPh₃)₃$, phosphine exchange takes place, followed by C-H activation to give complex **2?** in 66% yield (Scheme 1). A similar reaction takes place with $HRh(PPh₃)₄$, although compound 2 is obtained in a lower yield.

Complex 2 was unambiguously characterised by $31P\{^1H\}$, $1H$, $1H$ { $31P$ }, $13C$ { $1H$ }, $13C$ { $1H$ } DEPT-135 and two-dimensional $31P\{1H\}$ - $31P\{1H\}$, $1H-1H$, $1H-13C\{1H\}$ NMR correlations in C_6D_6 at room temperature. Since the carbon atom bound to Rh is chiral, three different phosphorus atoms are observed. The PPhz groups *trans* to each other exhibit ddd splitting patterns in ³¹P{¹H} NMR at δ 66.9 and 63.6, with J_{PP} (trans) = 247.4 Hz, one showing $J_{\text{RhP}} = 199.7$ Hz, $J_{\text{PP}} (cis) = 31.2$ Hz and the other, $J_{\text{RhP}} = 207.9 \text{ Hz}$, $J_{\text{PP}} (cis) = 30.3 \text{ Hz}$. The PPh₃ group exhibits an AA'MX pattern (essentially two dd), with $J_{\text{RhP}} = 145.7 \text{ Hz}, J_{\text{PP}} (cis) = 31.2, 30.3 \text{ Hz}.$ ¹H NMR shows a quartet of three methyl protons at δ 1.86, which becomes a doublet with $J_{HH} = 6.7$ Hz upon phosphorous decoupling. The CH-Rh is hidden in the region of CH_2PPh_2 protons and its chemical shift of δ 3.57 is deduced from two-dimensional ¹H-¹H NMR. ¹³C{¹H} NMR exhibits the methyls at δ 23.9 (dm, J_{PC}) $= 17.6$ Hz). The Rh–C appears at δ 27.0 [dm, J_{PC} (trans) = 42.0 Hz]. These assignments are further confirmed by twodimensional ${}^{1}H-{}^{13}C\{ {}^{1}H\}$ NMR and ${}^{13}C\{ {}^{1}H\}$ DEPT-135 NMR (positive peaks). The carbon atoms of the CH_2P groups are inequivalent and appear as doublets at δ 42.9 and 44.7 (J_{PC} =

24.0 and 16.6 Hz, respectively). This is also confirmed by 13C{ 'H} DEPT-135 NMR (negative peaks). FD-MS of complex **2** exhibits the calculated molecular weight of 867.

Upon heating a toluene solution of complex **2** at 120 "C under 20 psi of hydrogen for 3 d, selective sp^2 - sp^3 C-C cleavage took place, quantitatively yielding complex **3** and ethane. The ethane was collected by a standard vacuum line technique and was quantitatively determined by GC. Significantly, methane was not detected in this experiment. Complex **3** was characterised spectroscopically? and independently synthesised by a reaction of 1,3-bis(diphenylphosphino)phenylene 4 with PhRh(PPh₃)₄ or $HRh(PPh_3)_4$.

Similarly, reaction of 1 with $[RhCl(C_8H_{14})_2]_2$ (C₈H₁₄ = cyclooctene) at 120 °C under 20 psi H_2 results in, after 3 d, formation of ethane in 95% yield and the hydrido complex **6** was also quantitatively formed (Scheme 2). Again, methane was not detected. The presumed C-H activation complex **5** was not observed in this case. Complex **6** was fully characterised spectroscopically⁺ and by independent synthesis from 4 and the rhodium dimer.

The proposed mechanism for the hydrogenolysis of **2** (Scheme 3) is similar to the one postulated for the hydrogenolysis of the analogous benzyl complex? Of particular interest is the issue of rhodium insertion into C-C of the postulated intermediate 7. Although the $Ar - CH_2CH_3$ is substantially stronger than $ArCH_2-CH_3$ [compare BDE kcal mol⁻¹,⁸ (1 cal = 4.184 J)] selective insertion into the Ar-C bond takes place. This is undoubtedly driven to a large extent by the formation of a relatively strong Ar-Rh bond9 and the more stable five-membered chelating system. However, a pathway involving consecutive sp^3 - sp^3 , sp^2 - sp^3 bond cleavages, generating methane and complex **3** would have been thermodynamically much more favourable. \ddagger Thus, the reason for the preference of ethane formation is probably kinetic. Since both $Ph-CH_2CH_3 = 96.3 \pm 1$ *viz* BDE PhCH₂-CH₃ = 71.8 \pm 1

C-C bonds in question are easily accessible to the metal, it can be suggested that the main reason for the preference of Ar-C cleavage is associated with the aromatic system. As in Ar-H oxidative addition, an η^2 -arene intermediate **A** may be involved here. Another possibility may involve nucleophilic attack of the metal *via* a Meisenheimer-type intermediate **B.**

This work was supported by the Israel Science Foundation, Jerusalem, Israel.

Received, 6th June 1995; Corn. 5l03647J

Footnotes

t *Spectroscopic data* for **2:** 31P(IH} NMR (C6D6) 6 66.9 [ddd, left part of 63.6 [ddd, right part of AB_q, J_{PP} *(trans)* = 247.4, J_{RhP} = 207.9 Hz, J_{PP} *(cis)* = 30.3 Hz, 1 P, PPh₂] and 36.5 (2 dd, J_{RhP} = 145.7, J_{PP} *(cis)* = 31.2, 30.3 Hz, 1 P, PPh₃); ¹H NMR (C₆D₆) δ 7.95 (m, 6 H, PPh₃), 7.55 (m, 8 H, PPh₂), 7.12 (m, 9 H, PPh₃), 7.05 (m, 12 H, PPh₂), 6.98 (distorted t, $J_{PH} = 1.0$ Hz, 3 H, ArH), 3.75 (d, left part of AB_{q} , $J_{HH} = 13.0$ Hz, 1 H, CH_2 PPh₂), 3.58 (d, left part of AB_{q} , J_{HH} = 13.8 Hz, 1 H, CH_2PPh_2), 3.57 [m, hidden, AB_{q} , J_{PP} *(trans)* = 247.4, J_{RhP} = 199.7 Hz, J_{PP} *(cis)* = 31.2 Hz, 1 P, PPh₂],

1966 **J. CHEM. SOC., CHEM. COMMUN., 1995**

characterised by ¹H-¹H 2D NMR, 1 H, CH(CH₃)Rh], 3.47 (dm, right part of AB₉, $J_{HH} = 13.0$ Hz, 1 H, CH_2 PPh₂), 3.45 (dm, right part of AB₉, J_{HH} = 13.8 Hz, 1 H, CH_2 PPh₂), 1.86 [q (dt), J_{HH} = 6.7 Hz (characterised by ¹H{³¹P} NMR), 3H, CH(CH₃)Rh]; ¹³C{¹H} NMR (C₆D₆) δ 148.3 (m, J_{PC} $= 6.7$ Hz, Ar), 140.5 (m, $J_{PC} = 4.2$, 1.8 Hz, Ar), 140.2 (m, $J_{PC} = 7.8$, 1.8 Hz, Ar), 138.6 (dvt, $J_{PC} = 2.7$ Hz, PPh₃), 138.3 (dvt, $J_{PC} = 2.5$ Hz, PPh₃) 138.0 (d, $J_{PC} = 12.0$ Hz, PPh₂), 135.1 (br d, $J_{PC} = 14.8$ Hz, PPh₂), 134.4 Hz), 131.7 (d, $J_{\text{PC}} = 8.1 \text{ Hz}$), 131.5 (m, Ar), 130.3 (s, PPh₃), 129.3 (d, J_{PC} 117.7 (d, $J_{PC} = 1.3$ Hz, Ar), 44.7 (d, $J_{PC} = 16.6$ Hz, CH_2 PPh₂), 42.9 (d, J_{PC} $= 24.0$ Hz, CH_2 PPh₂), 27.0 [dm, J_{PC} (trans) $= 42.0$ Hz, $CH(CH_3)Rh$], 23.9 [dm, Jpc = 17.6 Hz, CH (CH3)RhI. FD-MS: calc. *mlz* 867, found *mlz* 867. (d, $J_{\text{PC}} = 12.7 \text{ Hz}$, PPh₂), 133.4 (d, $J_{\text{PC}} = 18.7 \text{ Hz}$), 132.4 (d, $J_{\text{PC}} = 10.4$ $= 1.3$ Hz), 129.0 (s, PPh₂), 128.6 (d, $J_{PC} = 6.3$ Hz) 128.5 (d, $J_{PC} = 6.4$ Hz),

For 3: ³¹P(¹H) NMR (C₆D₆) δ 50.7 (dd, $J_{\text{RhP}} = 161.6$, $J_{\text{PP}} = 30.6$ Hz, 2 P, PPh₂), 38.9 (dt, $J_{\text{RhP}} = 121.6$, $J_{\text{PP}} = 30.6$ Hz, 1 P, PPh₃); ¹H NMR (C_6D_6) δ 7.60–7.50 (m, 14 H, PPh₂ and PPh₃), 6.90–6.70 (m, 21 H, PPh₂ and PPh₃), 6.34 (br s, 3 H, ArH) and 3.94 (vt, $J_{PH} = 3.1$ Hz, 4 H, CH_2 PPh₂); ^{13}C ^{{1}H} NMR (C_6D_6) δ 178.4 [ddt, J_{PC} *(trans)* = 78.8, J_{PC} *(cis)* = 7.7, Ar), 139.5 (dt, J_{PC} = 30.0, 2.2 Hz, PPh₃), 138.0 (td, J_{PC} = 16.8, 1.7 Hz, $J_{\text{RhC}} = 31.9 \text{ Hz}$, Ar, *ipso-C*], 148.3 (ddvt, $J_{\text{PC}} = 11.2$, 1.0, $J_{\text{RhC}} = 2.3 \text{ Hz}$, PPh₂), 134.7 (d, $J_{PC} = 13.5$ Hz, PPh₂), 133.6 (dt, $J_{PC} = 6.2$ Hz, PPh₃), 128.6 (d, $J_{\text{PC}} = 7.4$ Hz, PPh₃), 128.5 (s, PPh₃), 128.4 (d, $J_{\text{PC}} = 1.5$ Hz, PPh₂), 127.4 (d, $J_{PC} = 8.8$ Hz, PPh₂), 124.1 (s, Ar), 121.5 (dvt, $J_{PC} = 9.7$, 2.8 Hz, Ar), 49.9 (ddvt, $J_{PC} = 13.7, 7.7, J_{RhC} = 2.8$ Hz, CH_2 PPh₂).

For **6**: ³¹P{¹H} NMR (CD₂Cl₂), δ 48.9 (dd, $J_{\text{RhP}} = 111.3$, $J_{\text{PP}} = 24.2$ Hz, 2 P, PPh₂) and 18.5 (dt, $J_{\text{RhP}} = 82.5$, $J_{\text{PP}} = 24.2$ Hz, 1 P, PPh₃); ¹H NMR (CD_2Cl_2) δ 7.50–6.80 (m, 38 H, PPh₂ and PPh₃), 4.55 (dvt, left part of ABX₂ pattern, J_{HH} = 15.2, J_{PH} = 3.8 Hz, 2 H, CH_2 PPh₂, 3.74 (dvt, right part of ABX₂ pattern, $J_{HH} = 15.2$, $J_{PH} = 4.6$ Hz, 2 H, CH_2 PPh₂) and -16.9 [m, (ddt), J_{PH} = 12.8, 12.3, J_{RhH} = 22.7 Hz, 1 H, H-Rh]; ¹³C(¹H) NMR (CD_2Cl_2) δ 166.7 [ddt, J_{PC} (*trans*) = 99.3, J_{PC} = 3.6, J_{RhC} = 25.8 Hz, Ar, ipso-C], 144.6 (dvt, $J_{\text{PC}} = 8.3$, 1.5 Hz, Ar), 135.5 (distorted m), 134.4 (d, $J_{\text{PC}} = 11.2 \text{ Hz}$), 133.9 (t, $J_{\text{PC}} = 5.2 \text{ Hz}$), 133.6 (distorted t, $J_{\text{PC}} = 5.2 \text{ Hz}$), 130.0 (d, J_{PC} = 7.3 Hz), 129.2 (d, J_{PC} = 1.8 Hz), 128.8 (br s), 128.2 (dt, J_{PC} $= 5.9, 4.7 \text{ Hz}$), 127.8 (d, $J_{\text{PC}} = 8.9 \text{ Hz}$), 124.4 (s), 122.3 (dt, $J_{\text{PC}} = 8.8, 4.7$ Hz), 47.5 (ddvt, $J_{\text{PC}} = 16.8, 7.5, J_{\text{RhC}} = 2.2$ Hz, CH_2 PPh₂); IR (film)/cm⁻¹ 2107 (YRhH)

\$ Comparing processes *(a)* and *(b)* below, the latter is calculated to be more exothermic by approximately 28 kcal mol^{-1}.

 (a) HRh + PhCH₂CH₃ \rightarrow Ph-Rh + C₂H₆ (b) HRh + PhCH₂CH₃ + H₂ \rightarrow Ph-Rh + 2CH₄

Refer en ces

- 1 R. H. Crabtree, *Chem. Rev.,* 1985, 85, 245.
- 2 R. A. Periana and R. G. Bergman, J. *Am. Chem. Soc.,* 1986,108,7346; R. C. Hemond, R. P. Hughes, D. J. Robinson and A. L. Rheingold, *Organometallics,* 1988, 7, 2239; C. Perthuisot and W. D. Jones, J. *Am. Chem. SOC.,* 1994,116, 3647.
- 3 R. H. Crabtree, R. P. Dion, D. J. Gibboni, D. V. McGrath and E. M. Holt, J. *Am. Chem. SOC.,* 1986,108,7222; J. W. Kang, R. Moseley and P. M. Maitlis, J. *Am. Chem. SOC.,* 1969, **91,** 5970; F. W. *C.* Benfield and M. L. H. Green, J. *Chem. SOC., Dalton Trans.,* 1974, 1324; P. Eilbracht, *Chem. Ber.,* 1980, 113, 542; R. C. Hemond, R. P. Hughes and M. B. Locker, *Organometallics,* 1986, *5,* 2392.
- 4 J. W. Suggs and C.-H. Jun, J. *Am. Chem. SOC.,* 1984, 106, 3054; 1986, 108, 4679; J. F. Hartwig, R. A. Anderson and R. G. Bergman, J. *Am. Chem. SOC.,* 1989, 111, 2717.
- *5* M. Murakami, H. Amii and Y. Ito, *Nature,* 1994,370, 540.
- 6 H. Suzuki, Y. Takaya and T. Takemoir, J. *Am. Chem. SOC.,* 1994, 116, 10779.
- 7 M. Gozin, **A.** Weisman, Y. Ben-David and D. Milstein, *Nature,* 1993,364, 699; M. Gozin, M. Aizenberg, **S.-Y.** Liou, A. Weisman, Y. Ben-David and D. Milstein, *Nature,* 1994, **370,** 42.
- 8 K. W. Egger and A. T. Cocks, *Helv. Chim. Acta,* 1973, *56,* 15 16.
- 9 W. D. Jones and F. J. Feher, J. *Am. Chem. SOC.,* 1984, 106, 1650; J. A. Martinho-Simoes and J. L. Beauchamp, *Chem. Rev.,* 1990, **90,** 629.