New Homoleptic Metal Carbonyl Cations: the Syntheses, Vibrational and ¹³C MAS NMR Spectra of Hexacarbonyl-ruthenium(II) and cosmium(II) Undecafluorodiantimonate(v), [Ru(CO)₆][Sb₂F₁₁]₂ and [Os(CO)₆][Sb₂F₁₁]₂

Changqing Wang,^a Bianca Bley,^b Gerd Balzer-Jöllenbeck,^b Andrew R. Lewis,^a Sun C. Siu,^a Helge Willner^b and Friedhelm Aubke^{*a}

^a Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1 ^b Institut für Anorganische Chemie der Universität, Callinstr. 9, D-30167, Hannover, Germany

The new homoleptic carbonyl cations $[Ru(CO)_6]^{2+}$ and $[Os(CO)_6]^{2+}$ are obtained as $[Sb_2F_{11}]^-$ salts by the reductive carbonylation of $M(SO_3F)_3$ (M = Ru, Os), under very mild conditions (60–90 °C, 1 atm CO), in liquid SbF₅ in a simple, one-step procedure, and are characterized by FT Raman, FTIR and ¹³C MAS NMR spectroscopy.

Among homoleptic transition metal carbonyls, mononuclear and octahedral species like the carbonylate anions of the type $[M(CO)_6]^-$ (M = V, Nb or Ta),¹ neutral molecules like $M(CO)_6$ (M = Cr, Mo or W),² and the cations $[M(CO)_6]^+$ (M = Mn, Tc or Re),³ have been known for some time.^{1–3} A more recent addition are the highly reduced carbonylates $[M(CO)_6]^{2-}$ (M = Ti, Zr or Hf).⁴

The existence of the dications $[M(CO)_6]^{2+}$ (M = Fe, Ru or Os), has long been anticipated, and there have been early claims of the identification of $[Fe(CO)_6]^{2+5.6}$ and of $[Os(CO)_6]^{2+5}$ as $[AlCl_4]^-$ salts,⁵ or as products of an amine-catalysed disproportionation of $Fe(CO)_5$.⁶ However, these claims have been subsequently repudiated,⁷ and it was accepted that none of the three cations exists in isolable, thermally stable compounds.^{3,8} It appears that the Lewis acids used (AlCl₃, FeCl₃) were inadequate, and the resulting conjugate anions (AlCl₄⁻, FeCl₄⁻) were incapable of stabilizing dipositive cations.³

We have recently reported a new synthetic approach to homoleptic carbonyl cations of electron-rich metals, which has allowed for the first time the isolation and characterization of two types of homoleptic dications, linear $[Hg(CO)_2]^{2+}$,⁹ and square-planar $[M(CO)_4]^{2+}$ (M = Pd or Pt).¹⁰ Thermally stable salts are in all instances formed with $[Sb_2F_{11}]^-$ as counter anion.⁸⁻¹⁰ Of these, $[Hg(CO)_2][Sb_2F_{11}]_2$ has recently been structurally characterized,^{9b} where it has been found that secondary SbF…CO contacts are stabilizing the resulting salts in the solid state.

The synthetic method used, the solvolysis of $Hg(SO_3F)_2$ in liquid SbF_5 in a CO atmosphere,^{9a} is now adopted to the syntheses of $[Ru(CO)_6][Sb_2F_{11}]_2$ and $[Os(CO)_6][Sb_2F_{11}]_2$ from $Ru(SO_3F)_3^{11}$ or $Os(SO_3F)_3^{12}$ respectively. In a simple, one-step process according to eqn. (1), the new homoleptic metal

$$2 M(SO_{3}F)_{3} + 16 SbF_{5} + 13 CO \xrightarrow{SbF_{5}(l), ca. 1 \text{ atm CO}}_{60-90 °C, 2-4 d} \rightarrow 2 [M(CO)_{6}][Sb_{2}F_{11}]_{2} + CO_{2} + S_{2}O_{5}F_{2} + 4 Sb_{2}F_{9}(SO_{3}F)$$
(1)
(M = Ru or Os)

carbonyl salts form as white, moisture-sensitive solids. They are identified by microanalysis, the mass balance of the reaction and CO uptake measurements. Reductive carbonylation in a strongly acidic medium, first employed in the generation of

 $[Au(CO)_2]^+$ in HSO₃F,¹³ is also found to be very effective in liquid SbF₅ as reaction medium. The reactions proceed quantitatively under rather mild conditions. The temperature of the reaction should be held below 100 °C to avoid reduction to Os or Ru metal. All attempts to extend our approach to the synthesis of $[Fe(CO)_6][Sb_2F_{11}]_2$ have so far failed, and the known compound $Fe[SbF_6]_2^{14}$ is formed instead. It is, however, possible to generate the cations $[M(CO)_6]^+$ (M = Mn, Re), in liquid SbF₅ from their M(CO)₅Cl precursors, and to isolate the compounds $[M(CO)_6][Sb_2F_{11}]$ (M = Mn, Re), again under mild conditions (60-80 °C, 0.5-0.8 atm CO), which differ markedly from those of the original high-pressure syntheses with AlCl₃ as Lewis acid.^{3,15} Attempts to obtain metal carbonyl fluorosulfates of Ru and Os were successful. Both Ru(SO₃F)₃ and Os(SO₃F)₃ were reduced in HSO₃F at ca. 25 °C to brown M^{II} carbonyl fluorosulfates that have not been identified fully. In liquid SbF5 in a CO atmosphere the compounds convert to $[M(CO)_6][Sb_2F_{11}]_2.$

The thermal stabilities of $[Ru(CO)_6][Sb_2F_{11}]_2$ and $[Os(CO)_6][Sb_2F_{11}]_2$ were comparable. On heating in a sealed capillary, both solids shrank at *ca*. 170 °C and decomposed at 300 °C to black residues. Solutions of $[M(CO)_6][Sb_2F_{11}]_2$ in HSO₃F or in HSO₃F–SbF₅ were unstable and decomposed slowly with CO evolution. Both compounds were insoluble in SO₂ and we were not able to obtain single crystals. Characterization of the cations hence rests on vibrational and ¹³C MAS NMR spectra.

The vibrational analysis is facilitated by the syntheses of the ¹³C isotopomers from ¹³CO. Vibrational bands attributed to the $[Sb_2F_{11}]^-$ anions are readily identified by comparison to precedents.^{9,10,16} This allows the identification of five out of six Raman active and three of four IR active fundamentals of $[M(CO)_6]^{2+}$ (M = Ru, Os), by their ¹²C–¹³C shifts. Raman and IR bands due to the cation are mutually exclusive, which indicates that $[M(CO)_6]^{2+}$ is octahedral.

As observed in the Raman spectra of other $M(CO)_6$ species,^{17,18} the A_{1g} CO stretching vibrations are found at higher wavenumbers, but are of lower intensity, than the E_g vibrations at lower wavenumbers. As summarized in Table 1, the CO stretching vibrations of the two homoleptic carbonyl cations $[M(CO)_6]^{2+}$ (M = Ru, Os) occur at considerably higher wavenumbers than for the other isoelectronic $M(CO)_6$ species, and the stretching force constants are 19.82 and 19.74 \times 10²

Table 1 Vibrational spectra (\overline{v}_{CO} region) and ¹³C chemical shifts for octahedral, isoelectronic [M(CO)₆] species

	$v_1 A_{1g}/cm^{-1}$	$v_3 E_g/cm^{-1}$	$v_6 F_{1u}/cm^{-1}$	$\overline{\nu}$ CO _{av} /cm ⁻¹	$f_{\rm CO} imes 10^2/{ m N~m^{-1}}$	¹³ C NMR/δ
$[\operatorname{Ru}(\operatorname{CO})_6]^{2+a}$	2254 (2203)	2222 (2172)	2199 (2149)	2216 (2166)	19.82 (19.81) ^d	166.1
$[Os(CO)_6]^{2+a}$ $[Re(CO)_6]^{+b}$	2259 (2206) 2197	2218 (2166) 2122	2190 (2141) 2085	2211 (2160) 2116	19.76 (19.78) ^d 18.67	147.3
$Mo(CO)_6(s)^c$ W(CO)_6(s)^c	2113 (2064) 2115 (2066)	2005 (1960) 1998 (1953)	1986 (1943) 1977 (1933)	2014 (1969) 2007 (1962)	17.15 17.02	204 ^e 192 ^e

^a Wavenumbers in parentheses refer to the ¹³C isotopomer bands. ^b Ref. 17. ^c Ref. 18. ^d Obtained by using the Cotton–Kraihanzel method (see *e.g.* F. A. Cotton and C. S. Kraihanzel, *J. Am. Chem. Soc.*, 1962, **84**, 4432. ^e B. E. Mann, *J. Chem. Soc.*, *Dalton Trans.*, 1973, 2012.

N m $^{-1}$ respectively, compared to 17.15 and 17.02 \times 10 2 N m $^{-1}$ for Mo(CO)_6 and W(CO)_6.18

¹³C NMR chemical shifts are found at δ 166.1 and 147.3 for the ruthenium(II) and osmium(II) hexacarbonyl cations. As the oxidation state of the metal increases, π -back bonding gradually appears to diminish. This is reflected in an increase of both \overline{v} CO_{av}, the stretching force constants f_r , and a shift of the ¹³C resonance to lower frequencies, as seen in Table 1. Recently reported ¹³C NMR δ values of 179 and 176.9 for [Ru(CO)₅H]⁺ and of δ 159 for [Os(CO)₅H]²⁺ in anhydrous HF¹⁹ correlate well, as do chemical shifts of δ 217 and 211 reported for the carbonylate anions [Nb(CO)₆]⁻ and [Ta(CO)₆]⁻¹ on the other end of the range.

In summary, a new synthetic methodology, the solvolysis in liquid antimony(v) fluoride in a CO atmosphere is, for the first time, extended to the binary fluorosulfates $Ru(SO_3F)_3^{11}$ and $Os(SO_3F)_3^{12}$ In a simple one-step procedure the new, thermally stable salts $[M(CO)_6][Sb_2F_{11}]_2$ (M = Ru, Os), form readily. The $[M(CO)_6]^{2+}$ cations are strictly octahedral. The ability of the $[Sb_2F_{11}]^-$ anion to stabilize highly electrophilic, dipositive cations by interionic secondary contacts between F and the electrophilic C atom of the carbonyl group is confirmed by the molecular structures of $[Hg(CO)_2][Sb_2F_{11}]_2^{9b}$ and $[Ir-(CO)_5CI][Sb_2F_{11}]_2^{,20}$ where an octahedrally coordinated cation, $[Ir(CO)_5CI]^{2+}$ is found, and significant F...C interionic contacts are observed.

Financial support by the NSERC, DFG, and NATO is gratefully acknowledged. We are thankful to the DEGUSSA Company for a gift of Ru and Os metal powder.

Received, 15th May 1995; Com. 5/03061G

References

- 1 J. E. Ellis, Adv. Organomet. Chem., 1990, 31, 1.
- 2 Ch. Elschenbroich and A. Salzer, in *Organometallics*, VCH, Weinheim, 1989, p. 220.
- 3 E. W. Abel and S. P. Tyfield, Adv. Organomet. Chem., 1970, 8, 143.
- 4 J. E. Ellis and K.-M. Chi, J. Am. Chem. Soc., 1990, 112, 6022.
- 5 H. Hieber and T. Kruck, Angew. Chem., 1961, 73, 580.
- 6 H. W. Sternberg, R. A. Friedel, S. L. Shufler and I. Wender, J. Am. Chem. Soc., 1955, 77, 2675.
- 7 W. Hieber, V. Frey and P. John, Chem. Ber., 1967, 100, 1961.
- 8 F. Aubke and C. Wang, Coord. Chem. Rev., 1994, 137, 483.
- 9 (a) H. Willner, M. Bodenbinder, C. Wang and F. Aubke, J. Chem. Soc., Chem. Commun., 1994, 1189; (b) M. Bodenbinder, G. Balzer-Jöllenbeck, H. Willner, R. J. Batchelor, F. W. B. Einstein, C. Wang and F. Aubke, Inorg. Chem., submitted for publication.
- 10 G. Hwang, C. Wang, F. Aubke, M. Bodenbinder and H. Willner, Can. J. Chem., 1993, 71, 1532.
- 11 P. C. Leung and F. Aubke, Can. J. Chem., 1984, 62, 2892.
- 12 P. C. Leung, G. B. Wong and F. Aubke, J. Fluorine Chem., 1987, 35, 607.
- 13 H. Willner and F. Aubke, Inorg. Chem., 1990, 29, 2195.
- 14 D. Gantar, I. Leban, B. Friec and J. H. Holloway, J. Chem. Soc., Dalton Trans., 1987, 2379.
- 15 E. O. Fischer and K. Öfele, Angew. Chem., 1961, 73, 581; E. O. Fischer, K. Fichtel and K. Öfele, Chem. Ber., 1962, 95, 249.
- 16 H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter and F. Aubke, J. Am. Chem. Soc., 1992, 114, 8972.
- 17 E. W. Abel, R. A. N. McLean, S. P. Tyfield, P. S. Braterman, A. P. Walker and P. J. Hendra, J. Mol. Spectrosc., 1969, **30**, 29.
- 18 L. H. Jones, R. S. McDowell and M. Goldblatt, *Inorg. Chem.*, 1969, 8, 2349.
- 19 S. A. Brewer, J. H. Holloway and E. G. Hope, J. Fluorine Chem., 1995, 70, 167.
- 20 C. Wang, S. J. Rettig, J. Trotter, H. Willner and F. Aubke, to be published.