An Active Site Model for Calcium(i1)-containing Quinoproteins

Shinobu Itoh,* Xin Huang, Hirokatsu Kawakami, Mitsuo Komatsu, Yoshiki Ohshiro and Shunichi Fukuzumi"

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-oka **2-** *I, Suita, Osaka 565, Japan*

The Ca²⁺ complexes of PQQ-2,9-dimethyl ester and its iminoquinone derivative have been synthesised and the reactivity towards alcohols examined; the oxidising ability of the quinone **is** significantly enhanced by binding Ca*+ and NH₃, both of which are essential for quinoprotein methanol dehydrogenase activation.

 PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo [2,3-f] quinoline-2,7,9-tricarboxylic acid) is a novel cofactor of several NAD(P) or flavin-independent dehydrogenases involved in the oxidation of alcohols and aldose sugars in bacteria.1 The structure of PQQ has attracted much attention because of its potential ability as a metal ligand,² although the interaction of \overline{PQQ} and metal ions in living systems has not been identified until recently. Recent X-ray crystallographic studies of quinoprotein methanol dehydrogenase (MEDH) have shown that the cofactor PQQ directly coordinates to Ca^{2+} through the C-5 carbonyl oxygen, N-6 pyridine nitrogen and C-7 carboxylate group at the enzyme active centre.³ A similar interaction of Ca^{2+} and **PQQ** cofactor has also been suggested with ethanol- and glucose-dehydrogenase.^{4,5} Davidson and coworkers have reported the important role of Ca^{2+} in the structural stabilisation of the enzymes,⁶ but nothing is known about the catalytic role of Ca^{2+} for the enzymatic redox reactions. Here we report the synthesis and reactivity of the first Ca^{2+} complexes of **PQQ** and their iminoquinone derivatives to try to shed light on the catalytic roles of Ca^{2+} and NH₃, both of which are known activators of quinoprotein methanol dehydrogenase.

We used PQQ-2,9-dimethyl ester **1** which retains the functional groups (C-5 quinone carbonyl, N-6 pyridine nitrogen and C-7 carboxyl group) for Ca^{2+} binding. Hydrolysis of **PQQTME** (the trimethyl ester of PQQ) with CF_3CO_2H/H_2O at 60 "C for 12 h gave the expected 2,9-dimethyl ester in 67% yield (Scheme 1).[†] Addition of Ca(NO₃)₂ (10 equiv. in MeCN) to an MeCN solution of $1 (5.6 \times 10^{-3} \text{ mol dm}^{-3})$ quantitatively gave the Ca²⁺ complex 2 as a red powder.[†]

However, the same reaction using PQQTME did not give the expected product clearly indicating that the carboxyl group at the 7-position plays an essential role in the Ca^{2+} binding. In the IR spectrum, there is a strong absorption at 1628 cm^{-1} showing that the carboxyl group is in the carboxylate form to bind Ca^{2+} . The strong IR absorption at 1392 cm⁻¹ together with the small ones at 824 and 738 cm⁻¹ indicate that the nitrate ion acts as a bidentate ligand.7 The IR absorption of the quinone carbonyl group of 1 (1690 cm^{-1}) shifts slightly $(1684 \text{ cm}^{-1} \text{ in } 2)$ by the

CO₂H

complex formation, and the UV-VIS absorption at around 440 nm due to the n- π^* transition of the *o*-quinone function of **1** also shifts by $ca. 50$ nm with the Ca²⁺ complex 2 (490 nm). Such spectral changes also suggest the interaction between Ca2+ and the quinone carbonyl group. The existence of two water molecules in the complex was suggested by elemental analysis; they may be ligating rather than lattice water molecules, since no free water molecule peaks were detected in the TG analysis below 300 °C. All these results support the structure of Ca^{2+} complex **2.** The similar 0-rich coordination environment (5 0 and 1 N) for Ca²⁺ has been reported in the MEDH active centre.³ Crystal structures of other metal ion complexes of PQQ or its analogues so far reported all suggest that the region around the pyridine nitrogen is the best place for any metal ion.^{2a,c,d,g,h}

It has been reported that MEDH requires $NH₃$ or a primary amine as an activator of the enzyme.⁸ In order to obtain information about the catalytic role of $NH₃$, we prepared an iminoquinone derivative of the calcium complex. Treatment of compound $2(3.5 \text{ mg}, 7.6 \mu \text{mol})$ with NH₃ in MeCN containing 1% DMSO (3.5 ml) gave a dark green solid **3** (86%).? Transformation of **PQQTME** to the corresponding C -5 iminoquinone derivative caused large upfield shifts of H-3 and H-8 in the ¹H NMR spectrum (PQQTME: H-3, δ = 7.28; H-8, 8.61, C-5 iminoquinone: H-3, 7.08; H-8, 7.94).9 Similar chemical shifts were observed in the case of compounds **2** and **3 (2:** H-3, δ = 7.21; H-8, 8.41, 3. H-3, 6.97; H-8, 7.87). The appearance of the IR absorption band at 1660 cm^{-1} corresponding to the C=N function also provides evidence for iminoquinone formation. Existence of the bidentate $NO₃$ ligand was also shown by a strong IR absorption band at 1386 cm^{-1} and the weaker ones at 810 and 764 cm-l. Instability of compound **3** towards hydrolysis, however, precludes the identification of other coordinated molecules such as water and/or ammonia.

Neither PQQTME or compound **1** is reactive towards benzyl alcohol. On the other hand, the Ca2+ complex **2** does oxidise benzyl alcohol to benzaldehyde as shown in Table 1. The oxidising ability of the iminoquinone Ca2+ complex **3** for benzyl alcohol is drastically enhanced as compared to that of the others (oxidation yield: 80%). Although the details of the alcohol oxidation mechanism is not yet clear, there is a correlation between the oxidation ability and the equilibrium constant (K_{add}) for the hemiacetal formation with methanol.¹⁰ This may suggest that the oxidation of benzyl alcohol to benzaldehyde

PQQ

ö

HO₂C

Table 1 Equilibrium constants (K_{add}) for hemiacetal formation with methanol and the oxidation yields of benzyl alcohol

Ouinone	$K_{\text{add}}/\text{dm}^3$ mol ^{-1<i>a</i>}	Yield of PhCHO $(\%)^b$
POQTME	0.63	
	0.75	
	1.55	
3	39.7	80

Determined by UV-VIS titration in MeCN according to the reported procedure.⁹ b Quinone $(1 \times 10^{-3} \text{ mol dm}^{-3})$, PhCH₂OH (0.1 mol dm⁻³), in MeCN containing 15% DMSO at 25 "C for 24 h under Ar. The yields $(\pm 5\%)$ were determined by GLC based on the quinone.

proceeds *via* a polar addition-elimination mechanism as in the amine oxidation by **PQQTME.9**

The present study was financially supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

Received, 2nd May 1995; Corn. 51028026

Footnote

7 *Physical and spectroscopic data* for 1: mp 219-221 "C; 1H NMR (DMSO- [$2H_6$]) δ 3.89 (3 H, s, CO₂Me), 4.05 (3 H, s, CO₂Me), 7.28 (1 H, s, H-3), 8.56 (1 H, s, H-8) and 12.52 (1 H, brs, H-1); I3C NMR (DMSO-[2H6]) 6 133.72, 134.06, 146.95, 148.85 (aromatic carbon \times 9, 159.83, 164.73, 166.70 (CO₂H and CO₂CH₃ \times 2), 173.31 (d, ³J = 1.5 Hz, C-4) and 177.25 (s, C-5); **Y** (KBr)/cm-' 3236 (OH), 1752 (C02H), 1718 (C02Me) and 1690 (quinone C=O); A,,, (MeCN)/nm 258 **(E** 23700 dm3 mol-I cm-I), 357 (12900) and 440 (sh) (1650); *mlz* (EI) 358 (M+). The position of the carboxyl group in 1 was confirmed by comparing the IR and ¹H NMR spectral data and the physical data such as pK_a s of the carboxyl group and the pyrrole proton with those of the 2,7-dimethyl ester derivative of **PQQ.** For 2: mp > 300 °C; ¹H NMR δ (DMSO-[²H₆]) 3.83 (3 H, s, CO₂Me), 4.02 (3 H, s, CO₂Me), 7.21 (1 H, s, H-3), 8.41 (1 H, s, H-8) and 12.75 (1 H, brs, 52.31, 54.15 ($CO_2CH_3 \times 2$), 113.91, 124.80, 126.28, 126.36, 128.45,

H-1); **Y** (KBr)/cm-l 1722 (ester carbonyl), 1684 (quinone carbonyl), 1628 (carboxylate), 1392, 824 and 738 (bidentate $NO₃$); λ_{max} (MeCN) containing 0.6% DMSO)/nm 257 **(E** 25300 dm3 mol-I cm-I), 360 (12800), 490 (sh) and (900); m/z (FAB, positive) 398 (M⁺ + 1 - NO₃⁻). For 3: mp $>$ 300 °C; ¹H NMR δ (DMSO-[²H₆]) 3.68 (3 H, s, CO₂Me), 3.92 (3 H, s, C02Me), 6.97 (1 H, s, H-3) and 7.87 (1 H, s, **H-8); Y** (KBr)/cm-l 1714 (CO_2CH_3) , 1660 $(C=N)$, 1622 (CO_2^-) , 1386, 810 and 764 (bidentate NO₃⁻); λ_{max} (MeCN)/nm 290 (ε 18600 dm³ mol⁻¹ cm⁻¹) and 361 (12400); m/z (FAB, positive) 397 (M⁺ + 1 - NO₃⁻).

References

- 1 *Principles and Applications of Quinoproteins,* ed. V. L. Davidson, Marcel Dekker Inc., New York, 1993.
- 2 *(a)* J. B. Noar, E. J. Rodriguez and T. *C.* Bruice, *J. Am. Chem.* Soc., 1985, **107,** 7198; *(b)* **S.** Itoh, M. Mure, Y. Ohshiro and T. Agawa, *Tetrahedron Lett.,* 1985,26,4225; (c) **S.** Suzuki, T. Sakurai, **S.** Itoh and Y. Ohshiro, *Inorg. Chem.,* 1988, **27,** 591; (4 T. Ishida, M. Doi, K. Tomita, H. Hayashi, M. Inoue and T. Urakami, *J. Am. Chem. Soc.*, 1989, 111, 6822; *(e)* B. Schwederski, V. Kasack, W. Kaim, E. Roth and J. Jordanov, *Angew. Chem., Int. Ed. Engl.*, 1990, 29, 78; (f) T. Hirao, T. Murakami, M. Ohno and Y. Ohshiro, *Chem. Lett.,* 1991, 299; *(g)* N. Nakamura, T. Kohzuma, H. Kuma and *S.* Suzuki, *Inorg. Chem.,* 1994, 33,1594; *(h)* T. Tommasi, **L.** Shechter-Barloy, D. Varech, J.-P. Battioni, B. Donnadieu, M. Verelst, **A.** Bousseksou, D. Mansuy and J.-P. Tuchagues, *Inorg. Chem.,* 1995,34, 1514.
- 3 *(a)* **S.** White, G. Boyd, F. **S.** Mathews, Z. Xia, W. Dai, Y. Zhang and V. L. Davidson, *Biochemistry,* 1993,32, 12955; *(b)* C. C. F. Blake, M. Ghosh, K. Harlos, A. Avezoux and C. Anthony, *Nature Struct. Biol.,* 1994, 1, 102.
- 4 A. Mutzel and H. Gorisch, *Agric. Biol. Chem.,* 1991, 55, 1721.
- *⁵*0. Geiger and H. Gorisch, *Biochem. J.,* 1989, 261, 415.
- 6 T. K. Harris and V. L. Davidson, *Biochem. J.,* 1994,303, 141.
- 7 F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry,* 4th edn., Wiley, New York, 1980, p. 173.
- 8 J. A. Duine, J. Frank, Jzn **and** J. A. Jongejan, *Adv. Enzymol.,* 1987, *59,* 169.
- 9 **S.** Itoh, M. Mure, M. Ogino and Y. Ohshiro, *J. Org. Chem.,* 1991, 56, 6857.
- 10 **S.** Itoh, M. Ogino, Y. Fukui, H. Murao, M. Komatsu, Y. Ohshiro, T. Inoue, **Y.** Kai and N. Kasai, *J. Am. Chem.* SOC., 1993,115,9960.