Generation and Trapping of 1,3-Dilithio-1,3-disila-isoindolines, the First Example of Dianions of Functionalized Silanes

Kohei Tamao," Guang-Ri Sun and Atsushi Kawachi

Institute for Chemical Research, Kyoto University, Uji, Kyoto 61 I, Japan

N-Alkyl-lf3-dichloro-lf3-disila-isoindolines are reduced with lithium naphthalenide at -78 **"C** to give the 1,3-dilithio derivatives which can be trapped with electrophiles.

The chemistry of silyl anions has attracted much attention recently from the synthetic and mechanistic viewpoints.' We have recently been engaged in a systematic study of functionalized silyl anions2 which include (amino)phenylsilyllithiums as the first stable functionalized silyl anions $3a$ and (alkoxy) phenylsilyllithiums as the silylenoid species.^{2b} We now report our preliminary results on the generation and trapping of *ortho*phenylene bis[(amino)silyllithium]s, 1,3-dilithio- 1,3-disila-isoindolines, as the first examples of dianions of functionalized silanes, while some dianions of non-functionalized silicon compounds have been known.3

The overall transformations are summarized in Scheme 1. The precursors for the dianions 4, 1,3-dichloro-1,3-disilaisoindoline derivatives **3,** were prepared in high yields from **ortho-bis(phenyldichlorosily1)benzene 2** by treatment with primary amines: **2** was obtained from a monosilyl-benzene **1** in three steps which involved the amino-group directed *ortho*lithiation as the first key step.4

Typically, a *cis/trans* mixture of 1,3-dichloro-1,3-disilaisoindoline 3a[†] with the tert-butyl group on nitrogen was treated with an excess amount of lithium naphthalenide in THF at -78 °C for several hours, according to our recent method,^{2c} followed by treatment with trimethylchlorosilane, to form the 1,3-disilylated product **5a.T** The trans isomer of **5a** could be isolated pure by column chromatography on silica gel without decomposition and was characterized unambiguously by X-ray crystallography, as shown in Fig. 1. \ddagger The two fused rings are

The by column chromatography on silicion and was characterized unambiguous
phy, as shown in Fig. 1.‡ The two for the shown in Fig. 1. $\frac{1}{2}$ The two for $\frac{1}{2}$ Si(NMeCH₂CH₂NMe₂₎₂ Ph
SiCl₂ Ph Ph $\mathbf{1}$ **2** 79% $C1$ Dh Ph Ē **b:** $R = \text{Bu}^t$, Pa^t
 b: $R = \text{Bu}^t$, 74% **b:** $R = \text{Bu}$, 83% *Messi* Ph Ph^r `Cl $Ph³$.
أما *cis, trans* mixture $\overline{4}$ *3a: R* = But; 74% $R'Me_2Si$, Ph $R'Me_2Si$, Ph vii ~ Lesi international and the situal state of the situation of the situation of the situation of the situation of
Ph² SiMe₂R' **Ph**² SiMe₂R' \sim si **5a:** R = But; R' = Me **6a:** R' = Me; 69% total **80%** *(cis* : *trans* = *1* : 1.9) **b**: $R' = Me₃Si$; 74% **b:** R = Bu; R' = Me **c**: $R' = Me_3$ SiMe₂Si; 74%

Scheme 1 *Reagents and conditions:* i, ButLi (1.8 equiv.), hexane, 0 "C to room temp., 2 h; ii, PhSiCl₃, room temp. to 50 °C, 4 h; iii, dry HCl, Et₂O, 0 "C, 2 h; iv, **RNH2** (1 equiv.), Et3N (excess), **THF,** room temp., 10 h; **v,** Lithium naphthalenide (7-9 equiv.), THF, -78 °C, 3-4.5 h; vi, R'Me₂SiCl $(5-9$ equiv.), -60 °C to room temp., 1 h; vii, 0.1 mol dm⁻³ HCl, THF, room temp., 2 h

nearly coplanar with the approximately planar nitrogen atom and normal Si-Si bonds.\$

In contrast to the stable aminosilyl monoanions, $2a$ the dianion **4** was rather unstable and decomposed almost completely after 3 h at 0°C in THF.

Similarly, **3b** with the less bulky butyl group on nitrogen could also be transformed into **5b** via **4.** However, **5b** decomposed upon attempted chromatographic isolation and was converted by acid hydrolysis into the corresponding stable cyclic disiloxane derivative 6a in ca. 70% overall yields.[†] The dianion **4** could be trapped with other electrophiles such as chloro-oligosilanes to form eventually the $ortho$ -bis(oligosilany1)benzenes **6,** which are otherwise hardly accessible. Each stereoisomer of **6** was isolated pure by HPLC and fully characterized.⁺

There are two points to be noted further. (1) For the generation of dianion **4,** lithium naphthalenide may be the reductant of choice. In comparison, reduction of **3** with lithium powder at 0°C in THF, under the standard condition for generation of the aminosilyl monoanions,^{$1a,5$} resulted in the formation of a complex mixture of products which involved **6** in only 20% yield or less, due to the instability of the dianion. (2) The cyclic disila-isoindoline skeleton seems to be essential for the high yield formation of the dianion. For example, we have examined similar reactions of an acyclic ortho-bis { (amino)-(ch1oro)silyl } benzene **7** with lithium naphthalenide, but obtained only a complex mixture of products here again.

The dianions should be useful for two-direction derivatizations in, for example, the synthesis of new organosilicon materials.6 Importantly, the products have functional groups on silicon atoms, ready for further functional group transformations.

Fig. 1 Crystal structure of *trans-5a* with 30% thermal ellipsoids. Selected bond distances (Å) and angles (°): Si(1)-C(1) 1.872(5), Si(2)-C(2) 1.872(5), Si(1)-N(1) 1.753(4), Si(2)-N(1) 1.747(4), *C(* 1)-C(2) 1.406(6), Si(1)-Si(3) 2.373(2), Si(2)-Si(4) 2.361(2), *C(* **1)-Si(** I)-N(1) 98.4(2), C(2)- **Si(2)-N(1) 98.6(2), Si**(1)-C(1)-C(2) 114.2(3), **Si**(2)-C(2)-C(1) 114.0(3), **Si(** 1)-N(1)-Si(2) 114.4(2), Si(l)-N(l)-C(25) 122.6(3), Si(2)-N(l)-C(25) 123.0(3).

We thank the Ministry of Education, Science, and Culture, Japan, for a Grant-in-Aid (No. 05453137) and Shin-Etsu Chemical Co., Ltd. for a gift of some chlorosilanes.

Received, 5th June 1995; Corn. 5/036081

Footnotes

All new compounds gave satisfactory analytical and/or spectral data.

Synthesis of 5a and 6a: To a solution of lithium napthalenide, prepared from 43 mg (6.1 mmol) of Li and 787 mg (6.1 mmol) of naphthalene in THF (8 ml) at room temp. for *5* h, was added a solution of 3a (300 mg; 0.7 mmol) in THF (3 ml) at -78 °C. The mixture was stirred at -78 °C for 4.5 h. To the silyl anion mixture was added Me₃SiCl (1.2 ml) at -60 °C, followed by stirring at room temp. for 1 h. After condensation, dilution with hexane and filtration, the filtrate was concentrated and subjected to column chromatography on silica gel (hexane–EtOAc 50: 1, $R_f = 0.15$) to give 5a (282 mg, 80%) as an isomeric mixture in a *cis* : *trans* ratio of 1 : 1.9). Recrystallization from hexane gave the pure *trans* isomer: Mp 178.5-179.5 "C: 1H NMR (270 MHz, [2H6]benzene: **6** 0.404 **(s,** 18 **H),** 1.281 (s, 9 H), 7.176-7.309 (m, **8 H),** 7.540 (dd, J 5.4 and 3.2 Hz, 2 H) and 7.822-7.857 (m, 4 H). ¹³C NMR (67.8 MHz): 6 0.88,35.67,53.26, 128.84, 129.18, 130.01, 133.39, 136.44, 142.28 and 147.98. 29Si NMR (53.7 MHz, [*H8]THF): **6** -6.4 and -20.3. In a similar experiment, the crude product was treated with 0.1 mol dm⁻³ hydrochloric acid (0.2 ml) in THF (6 ml) at room temp. for 2 h. Usual workup and column chromatography on silica gel (hexane-EtOAc $50:1$, R_f = 0.15) gave 6a in 69% overall yield as a *cis* : *trans* 1 : 1 mixture. Each isomer was separated by HPLC on silica gel (hexane-EtOAc 90: 1). *trans:* IH NMR (270 MHz, [2H6]benZene): **6** 0.135 (s, 18 H), 7.234-7.304 (m, 6H), 7.325 (dd, *J* 5.4 and 3.2 Hz, 2H), 7.756 (dd, *J* 5.4 and 3.2 Hz, 2 **H),** 7.861 129.89, 132.44, 133.82, 138.71, 147.96. HRMS: Calc. for C24H320Si4: *mlz* 448.15308. Found: *mlz* 448.15378. *cis:* **IH** NMR (270 MHz, [2H6]benzene): 60.299(s, **18H),7.101-7.135(m,6H),7.299(dd,J5.4and3.0Hz,2H),** 7.607 (dd, *J* 5.7 and 2.2 Hz, 4 H), 7.710 (dd, *J* 5.4 and 3.0 Hz, 2 H). l3C 138.73 and 147.80. HRMS: Calc. for C24H320Si4: *mlz* 448.15308. Found: *mlz* 448.15549. (dd, J 5.1 and 1.6 Hz, 4 H). ¹³C NMR (67.8 MHz): δ-2.08, 128.34, 129.26, NMR (67.8 MHz): δ -1.67, 128.20, 129.24, 129.71, 132.38, 133.86,

 \ddagger *Crystal data* for **5a** (colourless crystal from hexane): C₂₈H₄₁NSi₄, *M* = 503.98, prismatic $(0.5 \times 0.4 \times 0.4 \text{ mm})$, monoclinic, space group $P2_1/n$ (no. 14) with $a = 10.388(2)$, $b = 17.466(1)$, $c = 17.021$ Å, $V = 3049.9(6)$ Å³, $Z = 4, D_c = 1.097$ g cm⁻³, $F(000) = 600$, μ (Cu-K α) = 19.15 cm⁻¹, λ = 1.54178 Å, 20° C, $2\theta_{\text{max}}$ = 120.1°. Measurements: Rigaku AFC7R diffractometer, scan type ω -2 θ . A total of 4990 reflections was measured and of these 4701 were unique: **No** absorption correction was made; the data were corrected for Lorentz and polarization effects. The structure was solved by heavy-atom Patterson methods and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically . The final cycle of full-matrix least-squares refinement was based on 3292 reflections observed with $I > 3.00\sigma(I)$. $R = 0.077$ and $R_w = 0.090$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

 \S **5** exhibits two absorption maxima in UV spectrum λ_{\max} (cyclohexane) at 217 nm (ε 39 500 dm³ mol⁻¹ cm⁻¹) and 262 nm (ε 4270) characteristic of a combination of the $\sigma(Si-Si)$ - π and $n(N)-\sigma(Si-Si)$ conjugations in **(amino)(phenyl)disilanes:5** further detailed analysis of these conformationally fixed cyclic sytems may shed new light on the electronic properties.

References

- *(a)* Review: K. Tamao and A. Kawachi, *Adv. Organomet. Chem.,* 1995, in press. *(b)* Recent examples: B. Goldfuss and P. von R. Schleyer, *Organometallics,* 1995,14,1553; A. Sekiguchi, M. Nanjo, C. Kabuto and H. Sakurai, J. Am. Chem. Soc., 1995, 117, 4195.
- *(a)* **K.** Tamao, A. Kawachi and Y. Ito, *J. Am. Chem. SOC.,* 1992, 114, 3989; *(b)* **K.** Tamao, A. Kawachi,Angew. *Chem., Znt. Ed. Engl.* 1995,34, 818; *(c)* K. Tamao and A. Kawachi, *Organometallics,* 1995, 14, 3108.
- 3 *(a)* A. W. Jarvie, H. J. *S.* Winkler, D. J. Peterson and H. Gilman, *J. Am. Chem. SOC.,* 1961,83, 1921; *(b)* G. Becker, H. M. Harmann, E. Hengge and F. Schrank, *Z. Anorg. Allg. Chem.,* 1989,572,63; *(c)* **S.** K. Mehrotra, H. Kawa, J. R. Baran, Jr., M. M. Ludvig and R. J. Lagow, *J. Am. Chem.* SOC., 1990,112,9003; *(6)* W.-C. Joo, J.-H. Hong, S.-B. Choi, H.-E. Son and C.-H. Kim, J. *Organomet. Chem.,* 1990,391, 27; *(e)* J.-H. Hong, P. Boudjouk and **S.** Castellino, *Organometallics,* 1994, 13, 3387; (f> W. Ando, T. Wakahara, T. Akasaka and **S.** Nagase, *Organometallics,* 1994, 13,4683; (g) M. Kira, T. Maruyama, C. Kabuto, K. Ebata and H. Sakurai, Angew. Chem., Int. Ed. Engl., 1994, 33, 1489; (h) J. Belzner, U. Dehnert and D. Stalke, *Angew. Chem., Int. Ed. Engl.,* 1994, 33, 2450.
- **K.** Tamao, H. Yao, Tsutsumi, H. Abe, T. Hayashi and Y. Ito, *Tetrahedron Lett.,* 1990, 31, 2925; K. Tamao, T. Hayashi, Y. Ito and M. Shiro, *Organometallics,* 1992, 11, 182.
- 5 K. Tamao, A. Kawachi, Y. Nakagawa and Y. Ito, *J. Organomet. Chem.*, 1994,473, 29.
- For example: **H.** Yamashita and M. Tanaka, *Bull. Chem. SOC. Jpn.,* 1995, **68,** 403 and references cited therein.