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Borate-su bstituted di- and tri-anionic cyclopentadienyl ligands [X3B-C5H412- and [X2B(C5H4)213- (X = C6F5) give 
anionic group 4 metallocene complexes which provide a facile route to zwitterionic 'single-component' alkene 
polymerisation catalysts. 

The role of cationic 14-electron metal-alkyl complexes [(q- 
C5H&M-R]+ (M = Ti, Zr, Hf) as the active species in 
homogeneously catalysed olefin polymerisations is now well 
documented. l-3 Several attempts have been made to explore the 
role of the positive charge and of the counter anion in these 
systems by preparing neutral group 4 metal analogues of the 
type [M(R)(L)(T~-C~H~)], for example where L2- = 
[C2BgH11]2- (M = Ti, Zr, Hf).4 As a route to such complexes, 
a number of anionic complexes [(q-C5H,)(L>M(pC1)2Li- 
(OEt2)2] have been made based on dianionic q5-C5H4BNPri2 
and Y ~ - C ( C H ~ ) ~  ligands.5.6 In such compounds there is 
significant accumulation of negative charge on the metal centre 
and the chloride ligands which leads to the coordination of the 
counter cation via stable halide bridges, a feature more 
commonly seen with anionic metallocene halides of lanthanide 
metals. Since coordinative unsaturation of the metal centre must 
be regarded as a key feature of a successful polymerisation 
catalysts, we are currently exploring routes to neutral com- 
plexes of the type [MR(L)(q-C5H5)] in which the Lewis acidity 
of the complex is impaired as little as possible. Rather than 
using dianionic ligands L2-, it seemed to us that this condition 
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Scheme 1 i, Li(C5H5), thf, room temp.; ii, LiBun, thf, -78 "C; iii, MLC13 
[L = C5H5 or C5H3(SiMe3)2], thf, -78 "C to room temp., 80-90%; iv, 
LiMe, Et20-thf, -78 "C to room temp., 5040%; v, BBr3, toluene, room 
temp.; vi, Li(C5H5) (2 equiv.) Et20, -78 "C to room temp., 83%; vii, 
ZI-(CH*P~)~, toluene, room temp., 53%; viii, Li(C9H7) (2 equiv.) thf, 
90% 

was more likely to be fulfilled by ligands of the type L = 
Cp--Z-, i.e. a cyclopentadienyl ligand carrying an anionic 
substituent which does not itself coordinate to the metal, and we 
report here the synthesis of complexes derived from a new range 
of cyclopentadienyl ligands carrying borate substituents, 
[X3BC5H4I2- and [X2B(C5H&I3- (X = C6F5), and their 
conversion to zwitterionic species. 

A solution of cyclopentadienyllithium in tetrahydrofuran 
(thf) reacts with BX3 to give [Li(thf)4][X3B(C5H5)] l a  (X = 
C6F5). The indenylborate [Li(thf)4] [X3B(C,H7)] l b  is obtained 
similarly. The yields are essentially quantitative. The borates 1 
are readily deprotonated by butyllithium in thf to give dianions, 
e.g. [Li(thf)4]2[X3B(C5H4)] 2a. Solutions of 2a react with 
[MLC13]7 to give [Li(thf)d][MC12L{ ( T ~ - C ~ & ) B X ~ } ]  [3-, M = 
Zr; 4-, M = Hf; a, L = q-C5H5; b, L = C5H3(SiMe3)2-1,3J 
(Scheme 1). The compounds are isolated as off-white amor- 
phous solids.? In contrast to the anionic zirconium halides 
mentioned above the lithium cation is associated with the borate 
substituent rather than the chloride ligands and is readily 
exchanged with [NEt4]BF4 in dichloromethane to give 

Alkylation of [Li(thf)4] [3b] with methyllithium leads to the 
expected methyl complex [Li(thf)4] [ZrMe2 { C5H3- 
(SiMe3)2} { (C5H4)BX3)] { [Li(thf)4][3c] }. Treatment of the 
NEt4+ salts of 3b and 4b with LiMe in diethyl ether similarly 
gives the dimethyl complexes, without lithium/NEt4 ex- 
change. 

The reaction of X2BBrS (X = C~FS)  with 2 equivalents of 
cyclopentadienyllithium or indenyllithium affords 
[Li(thf)41 [X2B(C5H5)21 5a and [Li(thf)41 [x2B(C9H7>21 5b, 
respectively. Ligands of this nature have the potential to form 
boron-bridged ansa-metallocenes. 3 However, a suspension of 
5a in toluene reacts with Zr(CHzPh), to give the dinuclear 
zirconium tribenzyl complex 6 (Scheme I), even in the presence 
of excess 5a. Similar products are obtained from the reaction of 
5a with Zr(NMe2)4, although there is evidence for C5H5/NMe2 
exchange of the borate and the reaction is less clean. 

The reaction of [NEt4][4c] with [CPh3][B(C,F5)4] or 
B(C5F5)3 in toluene leads to decomposition. However, mixing 
[NEt4][4c] with [CPh3][B(C5F5)4] in the presence of 1 equi- 
valent of AlMe3 per Hf in toluene at 20 "C proceeds with methyl 
abstraction, indicated by the appearance of Ph3CCH3, to give 
[NEt4][B(C5F5),] and a single major organometallic product 7 
(Scheme 2). Variable-temperature lH and l3C NMR spectra and 
1H-13C heteronuclear correlation experiments support the 
formulation of 7 as a methyl-bridged Hf-A1 dimer, [ { C5H3(Si- 
Me3)2} { (q5-C5H4)BX3)Hf(p-Me2)A1Me2]. In contrast to the 

[MCbL { (C5b)BX3 ) 1 (M = zr, Hf). 
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Scheme 2 i, [CPh3][B(C,F5),], toluene, 0.5 AI2Me6; ii, -Ph3CMe, 
-"Et41[B(C6F5)41 
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related cationic Hf-A1 analogue [(q-C5H5)2Hf(pMe)2AlMe2]+ 
which is surprisingly non-fluxional,9 the methyl groups of 7 
exchange rapidly at room temperature and give rise to a singlet 
at 6 -0.39 which splits into a broadened 1 : 1 doublet on cooling 
to -60 OC, indicative of bridging and terminal methyl 
1 ig ands . 

Although the bulky -B(C6F5)3 substituents provide signifi- 
cant steric hindrance, complexes of type 3 and 4 are active 
polymerisation catalysts. For example, 3b in the presence of 
methylaluminoxane (Al/Zr = 1800) polymerises ethylene at 1 
bar/20 "C with a productivity of ca. lo6 g PE (mol Zr)-l bar-' 
h-l. Mixtures of [NEt4][4c] and [ C P ~ ~ ] [ B ( C S F ~ ) ~ ]  in the 
presence of A1Bui3 (Al/Hf = 10) are similarly active. 
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Footnotes 
? Satisfactory elemental analyses were obtained for all new compounds. 
Selected spectroscopic data: l a  (major isomer) 1H NMR (270 MHz, 
CDC13): 6 1.81 (br, 16 H, thf), 2.71 (s, 2 H, C,), 3.66 (br, 16 H, thf), 5.99 

NMR (CDC13, 84.1 MHz, 29 "C): 6 - 162.55 (br t ,  m-F), -157.72 (t, JF-F 

20, p-F), -135.49 (br, o-F). l b  lH NMR (CD2C12, 270 MHz): 6 1.88 (br, 
16 H, thf), 3.26 (s, 1 H, C5), 3.76 (br, 16 H, thf), 6.34 (d, 1 H, C5), 6.78 (d, 
1 H,C5),7.05-7.50(m,4H,C6). '9FNMR(CDCl3): 6 -166.80(t,JF-F20.6 
Hz, m-F), -162.08 (t, JF-F 20.6 Hz, p-F), -139.41 (d, JF-F 20.7 Hz, o-F). 
NMR data for complex anions: [3a]- lH NMR (CD2C12, 270 MHz, 23 "C): 
6 6.1 1 (t, 2 H, J 2.64 Hz, Ha), 6.32 (t, 2 H, J 2.64 Hz, Hb), 6.44 (s, 5 H, 

(s, 1 H, C,), 6.15 (d, 1 H, J 5.27 Hz, C5), 6.29 (d, 1 H, J 5.27 Hz, C5). '9F 

CsHS). I3C NMR (CD2C12,67.8 MHz, 23 "C): 6 112.61 (Ca), 116.15(CSHS), 
1 17.45 (Cb), 135.20 (CB), 137.29 (d,JC-F 250 HZ, m-C), 148.28 (d,JC-F 242 
Hz, o-C). l9F NMR (CD2C12): 6 -167.61 (t, J F - F  23.6 Hz, m-F), -162.99 

(CD2C12, 270 MHz, 23 "C): 6 0.27 (s, 18 H, SiMe3), 6.03 (t, 2 H, J 2.7 Hz, 
Ha), 6.29 (t, 2 H, J = 2.7 Hz, Hb), 6.85-6.90 (m, 3 H, Cd and Ce). '3C NMR 
(CD2C12, 67.8 MHz, 23 OC): 6 0.05 (SiMe3), 110.69 (Ca), 119.08 (Cb), 

m-C), 139.29 (d, Jc-F 248 Hz, p-C), 148.28 (d, JC-F 222 Hz, 0-C). '9F NMR 

(t, JF-F 20.6 Hz, p-F), -139.53 (d, JF-F 20.7 Hz, o-F). [3b]- 'H NMR 

128.32 (Cd), 129.07 (C"), 131.27 (C'), 135.20 (CB), 137.33 (d,Jc-~236 Hz, 

(CD2C12): 6 -167.61 (t,JF-F 17.7 HZ, m-F), -162.99 (t,JpF 20.6 HZ,p-F), 
-139.49 (d, JF-F 23.6 Hz, o-F). [4b]- 'H NMR (CD2C12,270 MHz, 23 "C): 
60.27 (s, 18H,SiMe3),5.94(t,2H,J2.64Hz,Ha),6.20(t,J2.64Hz,Hb), 
6.79 (d, 2 H , J  1.98 Hz, He), 6.81 (t, 1 H,J  1.98 Hz, Cd). I3C NMR (CD2C12, 
67.8 MHz, 23 "C): 6 0.10 (SiMe3), 109.37 (Ca), 117.76 (Cb), 125.63 (Cd), 
128.37 (Ce), 130.74 (CC), 132.92 (CB), 137.26 (d, JC-F 249 Hz, m-C), 
148.25 (d, Jc-F 239 Hz, O-C). '9F NMR (CD2C12): 6 -167.22 (t, JF-F 17.7 
Hz, m-F), -162.29 (t, JF-F 20.7 Hz, p-F), -139.42 (d, JF-F 23.6 Hz, O-F). 
[3c]- IH NMR (C6D6, 270 MHz, 23 "C): 6 -0.15 (s, 6 H, Zr-Me), 0.14 (s, 
18H,SiMe3),5.57(t,2H,J2.64Hz,Ha),5.81 (t,2H,J2.64Hz,Hb),5.91 

(SiMe3), 30.37 (Zr-Me,JCH 117 Hz), 105.79 (Ca), 112.67 (Cb), 120.56 (Cd), 

JF-F 20.6 Hz, m-F), -162.85 (t, J F - F  20.7 Hz,p-F), -139.88 (d, J F - F  17.7 

Me), 0.15 (s, 18 H, SiMe3), 5.55 (t, 2 H, J 2.64 Hz, Ha), 5.71 (t, 2 H, J 2.64 
Hz, Hb), 5.92 (t, 1 H, J 1.98 Hz, Hd), 6.58 (d, 2 H, J 1.98 Hz, He). 13C NMR 
(C6D6): 6 0.24 (SiMe3), 36.43 (Hf-Me, JCH 115.2 Hz), 105.40 (Ca), 112.15 
(Cb), 121.24 (Cd), 123.87 (Ce), 125.63 (Cc), 129.28 (CB). 19F NMR 

-139.34 (d, J F - F  20.7 Hz, OF). 5a IH NMR (270 MHz, CDC13): 6 1.16 (t, 

(t, 1 H, J 1.98 Hz, Hd), 6.65 (d, 2 H, J 1.98 He). 13C NMR (C6D6): 6 0.22 

122.50 (C"), 124.14 (Cc), 135.53 (CB). '9F NMR (CDzCl2): 6 -167.43 (t, 

Hz, o-F). [ 4 ~ ] -  'H NMR (C,@6, 270 MHz, 23 "C): 6 -0.34 (s, 6 H, Hf- 

(CDC13): 6 -166.66 (t, JF-F 17.7 Hz, m-F), -161.90 (t,JF-F 20.7 Hz,p-F), 

24 H, EtZO), 2.68 (br, 2 H, C5), 3.57 (q , l6  H, Et20), 5.95 (br, 2 H, C5), 6.04 

56.26 (CB), 66.88 (Et20), 106.09 (Ca, Cb), 137.28 (m-C, Jc-F 234 Hz), 

- 167.36 (br t, m-F), -163.68 (t, JF-F 39.1 Hz, p-F), - 139.42 (br, o-F). 5b 
'H NMR (270 MHz, CD2C12): 6 1.85 (m, 16 H, thf), 2.47 (br, 2 H, C5), 3.71 
(m, 16 H, thf), 6.45 (d, 2 H, J 5.60 Hz, C,), 6.78 (d, 2 H, J 5.60 Hz, C5), 

(q, 2 H, J 2.65, C5), 6.17 (s, 4 H, C5). 13C NMR (CDZC12): 6 14.48 (EtzO), 

138.94 (p-C, Jc-F 258 Hz), 148.50 (o-Jc-F 237 Hz). '9F NMR (CDC13): 6 

7.1-7.5 (m, 8 H, C6). I3C NMR (CD2C12): 6 25.73 (thf), 50.62 (CB of C5), 
68.77 (thf), 121.33 (c5), 123.04 (c,), 125.07 (c,), 126.85 (c5), 131.32 (c5), 
139.28 (c6), 144.72 (C,/Ca), 147.85 (c5/c6), 137.28 (m-c, JC-F 240 HZ), 
139.20 (p-C, Jc-F 246 Hz), 148.22 (O-C, JC-F 242 Hz). [6]- 'H NMR 
(CD~C12,270 MHz, 25 "C): 6 1.43 (s, 12 H, CHZPh), 5.44 (t, 4 H, J 2.64 Hz, 
Ha), 5.71 (t, J 2.64 Hz, Hb), 6.47 (d, 12 H, J 8.24 Hz, o-Ph), 6.95-7.05 (m, 
6 H, p-Ph), 7.10-7.20 (m, 12 H, m-Ph). 13C NMR (CD2C12, 67.8 MHz, 

of C,), 123.41 (p-C of Ph), 127.53 (m-C of Ph), 130.01 (o-C of Ph), 143.77 
(ipso-C of Ph), 139.12 (m-C, JC-F 228 Hz), 139.45 (p-C, Jc-F 250 Hz), 

m-F), -162.64 (t, JF-F 20.6 Hz, p-F), -139.77 (br, o-F). 7 1H NMR 
([2H~]toluene, 270 MHz, 23 "C): 6 -0.39 (br s, 12 H, AlMe), 0.07 (s, 18 H, 
SiMe3), 5.46 (br, 2 H, Ha), 5.65 (br, Hb), 5.84 (br, 1 H, Hd), 6.48 (br, 2 H, 
H3. 13C NMR ([2Hs]toluene 67.8 MHz, 23 "C): 6 -7.06 (br, AlMe, 
114 Hz), 0.24 (SiMe3), 35.46 (br, p-CH3, JCPH 115 Hz), 105.9 (Ca), 112.4 
(Cb), 121.49 (Cd), 123.99 (Ce), 127.75 (Cc), 130.50 (CB). 19F NMR 
([2Hs]toluene): 6 -166.73 (t, JF-F 23.0 Hz, m-F), -163.23 (t, JF-F 20.6 Hz, 

$ (C6Fs)2BBr was prepared in 78% yield by mixing BBr3 in hexane with 2 
equiv. of B(C6F5)3 in toluene at -78 "C and warming to room temp.; 19F 

Hz, p-F), -153.0 (t, J F - F  30.7 Hz, m-F). 
8 A borate-bridged ansa-arene complex is known, [Nb( Ph2B(q6-Ph)2) 
(C2Me2)] (ref.8). 

23 "C): 6 65.97 (CH2Ph, JC-H 128), 11 1.57 (Ca), 11 1.93 (Cb), 112.09 (CB 

148.38 (O-C, Jc-F 240 Hz). '9F NMR (CD2C12): 6 - 167.26 (t, JF-F 17.7 Hz, 

p-F), -138.79 (d, JF-F = 23.6 Hz, 0-F). 

NMR (C6D6,25 "C): 6 -121.6 (d, JF-F 27.4 Hz, o-F), -135.0 (t, JF-F 29.3 
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