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and (+)-Epijuvabione from 

(+)-Juvabione and (+)-epijuvabione, natural sesquiterpenes exhibiting insect juvenile hormone activity, have been 
synthesized with complete stereo- and enantio-control using (+)-norcamphor as the chiral precursor via both the 
enantiomeric bicyclo[3.2.l]octenone intermediates. 

Convex face selective introduction of an electrophile to 
2-oxabicyclo[3.2.l]octan-3-one 2, obtained by oxidation of 
norcamphor 1, is well established.' It is, however, very difficult 
to retain the original stereoselectivity owing to facile epimeriza- 
tion under the basic conditions employed.2 We, therefore, 
prepared optically active bicyclo[3.2.l]oct-3-en-2-one3 4 so as 
to prevent epimerization via the convex face selective 1,4-nu- 
cleophilic addition pathway (Scheme 1). Here we report a 
preparation of both enantiomeric forms of bicyclo[3.2. lloct- 
3-en-2-one 4 from the same (+)-norcomphor2 1 and their 
complete stereocontrolled conversion into (+)-juvabione 23 and 
(+)-epijuvabione 29, natural sesquiterpenes exhibiting selective 
insect hormone activity,475 employing convex face selective 
1,4-addition as a key step. 

(+)-Norcamphorf 1, presently the only commercially avail- 
able enantiomer, was easily converted into the silyl enol ethel-6 
6. Compound 6 was then treated with diiodomethane and 
diethyl zinc7 to stereoselectively give the cyclopropane 7 in 
excellent yield. On treatment with iron(rz1) chloride in di- 
methylformamide,7 compound 7 afforded directly (+)-bicyclo- 
[3.2.l]oct-3-en-2-one$,$ 4, [a]D33 + 359.2 (c 1.64, CHC13), 
[lit.,? + 334 (c 1.1, CHC13), 93% eel, in excellet yield with 
concomitant dehydrochlorination of the transient P-chloro- 
ketone intermediate 8. To invert the stereochemistry,8 (+)-4 was 
first treated with alkaline hydrogen peroxide to stereo- 
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Scheme 2 Reagents and conditions: i, Me3SiC1, LDA THF; ii, CH212, 
Et2Zn, Et20 (94% from 1); iii, FeC13, DMF, 85%; iv, 30% H202, MeOH, 
NaOH (1 mol dm-3) 97%; v, NH2NH2.H20, AcOH (cat.), MeOH, 72%; 
vi, Dess-Martin periodinate oxidation, 8 1 % 

selectively give the em-epoxide 9, [a]D31 + 31.1 (c 1.71, 
CHCl3). Compound 9 was then treated with hydrazine hydrate, 
followed by the Dess-Martin periodinate9 to give the enantio- 
meric (-)-enone 4, -346.2 (c 1.55, CHC13), in 57% 
overall yield via the ally1 alcohol 10, [(x]~33 -207.5 (c 1.48, 
CHC13) [lit+ + 219 (c 0.6, CHC13) for the (+)-enantiomer] 
(Scheme 2). 

To demonstrate its convex face selectivity, we chose two 
epimeric natural sesquiterpenes (+)-juvabione 23 and (+)-epi- 
juvabione 29 as target molecules whose stereocontrolled 
construction is known to be exceedingly diffi~ult.~" The present 
synthesis of (+)-juvabione 23 began with 1,4-addition of the 
Grignard reagent to (+)-enone 4 to selectively give the methyl 
product (+)-5a, [a]D23 + 136.7 (c 1.14, CHC13) [lit.,3b + 124 
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Scheme 3 Reagents and conditions: i, MeMgI, CuCN, LiCl, THF, 92%; 
ii, MCPBA, CH2C12; iii, MeNHOMe-HC1, Me3A1, CH2C12 (86% after 
separation); iv, PriCH2MgC1, THF, 70%; v, (CH20H)2, p-toluenesulfonic 
acid (p-TsOH), benzene, 9 1 %; vi, pyridinium chlorochromate (PCC), 
NaOAc, CH2C12, 94%; vii, pyrrolidine then TsS(CH2)$Ts, 70%; 
viii, KOH, acid workup, then CH2N2, 92%; ix, diisobutylaluminum hydride, 
then (CHZOH)~, p-TsOH, benzene, 77%; x, Hg(C10&, CaCO3, then 
NaBI&, 83%; xi, 12, PPh3; imidazole; xii, (Me0)2P(0)CH2C02Me, NaH, 
18-crown-6-MeCN, DMF (94% from 19); xiii, aq. TFA; xiv, LiC1, DBU, 
MeCN (57% from 21) 
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(c 2.3, CHC13), 93% eel. Although the Baeyer-Villiger 
oxidation did not occur regioselectively , (+)-5a afforded a 
mixture of lactones, mostly consisting of the desire 11 in nearly 
quantitative yield. The mixture was then treated, without 
separation with a complexlo generated in situ from N-  
methoxymethylamine hydrochloride and trimethylaluminium 
in dichloromethane to give the hydroxamate 12, + 11.5 (c 
1.10, CHC13), in 86% yield after separation of the undesired 
isomer, [a]D3' -3.5 (c 1.04, CHC13), in 9% yield. Treatment of 
12 with the Grignard reagentlo gave the ketone 13, [&ID3' -3.9 
(c 1.02, CHC13), which after ketalization was oxidized to the 
cyclopentanone 15, [aID31 + 97.3 (c 1.15, CHC13), via the 
alcohol 14, [&ID3' + 4.7 (c 1.13, CHC13). Treatment of 15 with 
trimethylene dithiotosylatell furnished regioselectively the a- 
diketone monothioketal 16, [a]D3' -68.2 (c 1.21, CHC13), 
which on cleavage12 followed by esterification furnished the 
dithian-ester (+)-17, [&ID3' +0.1 (c 1.10, CHC13), in 39% 
overall yield from 12. The ester 17 was partially reduced, 
followed by acetalized, to give the bis-dioxolane 18, [&ID3' 
-1.3 (c 1.94, CHC13), whose dithian functionality was 
sequentially hydrolysedl3 and reduced to give the primary 
alcohol 19, [&ID3' -9.2 (c 1.04, CHC13). The alcohol 19 was 
first transformed14 into the iodide 20 which was then coupled 
with the phosphonate15 to give the ester 21, [a]D30 - 1.2 (c 0.61, 
CHC13), in 60% overall yield from 17. Finally, 21 was acid- 
hydrolysed to give the keto-aldehyde 22 which was im- 
mediately subjected to intramolecular Horner-Emmons reac- 
tion16 to give (+)-juvabionef 23 +65.2 (c 0.46, benzene) 
[ w 7  [a]D25 +65.09 (c 0.89, benzene)], in 57% yield. 

(+)-Ep.ijuvabione 29 was synthesized starting with the same 
1,4-addition reaction of the enantiomeric (-)-enone 4 to give 
the enantiomeric exo-methyl product (-)-5a, [a]D3' - 129.8 
(c 0.82, CHC13). Exactly the same way as for the (+)-enantio- 
mer, (-)-5 was converted into the enantiomeric dithian-ester 
(-)-17 in a comparable overall yield. On stirring with 
bis(trifluoroacetoxy)iodobenzene in methanol,ls (-)-17 fur- 
nished the dimethyl acetal 24 by methanolysis of the dithian 
functionality. The ester group of 24 was then reduced to give the 
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Scheme 4 Reagents and conditions: i, MeMgI, CuCN, LiCl, THF, 88%; 
ii, see Scheme 3; iii, PhI(OCOCF3)2, MeOH; iv, LAH, THF (67% from 17); 
v, 12, PPh3, imidazole, 89%; vi, (Me0)2P(0)CH2C02Me, NaH, 18-crown- 
6-MeCN, DMF, 92%; vii, aq. TFA; viii, LiC1, DBU, MeCN (64% from 
27) 

primary alcohol 25 [a]D3' -6.1 (c 1.06, CHC13), which was 
transformed into the phosphonate ester 27, [aID3l +5.3 (c 1.21, 
CHC13), via the iodide 26 as above. Finally, 27 was sequentially 
hydroly sed and cyclized as above to yield (+)-epijuvabione 29, 
[a]D32 -1-96.3 (c 0.81, benzene)[lit:17 [aID25 -94.14 (c 0.64, 
benzene) for (-)-enantiomer] via the keto-aldehyde 28. Overall 
yield of the natural product 29 from 17 was 35%. 

In conclusion, we have succeeded in converting (+)-nor- 
camphor into bicyclo[3.2.l]oct-3-en-2-one in both its enan- 
tiomeric forms. Owing to its biased and rigid structure, the latter 
allowed convex face selective nucleophilic 1,4-addition leading 
to stereocontrolled construction of (+)-juvabione from the 
(+)-enantiomer in 10% overall yield and (+)-epijuvabione from 
the (-)-enantiomer in 18% overall yield. 

Received, 25th August 1995; Corn. 5105647K 

Footnotes 
'f Prepared from (+)-endo-norbomeol, kindly provided by Chisso Corpora- 
tion, Japan, in ca. 95% ee. 
$ Satisfactory analytical (combustion and/or high resolution mass) and 
spectral (IR, 1H NMR, and MS) data were obtained for all new 
compounds. 
9 Optical purity was determined to be > 95% ee by HPLC analysis using a 
chiral column (CHIRALCEL OB, elution: PriOH-hexane 1 : 200). 
fl Optical purity was determined to be > 95% ee by HPLC analysis using a 
chiral column (CHIRALCEL OB, elution: PriOH-hexane 1 : 100). 
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