Total Synthesis of the Natural Goniodiol-8-monoacetate from Cinnamyl Alcohol

Zhi-Cai Yang and Wei-Shan Zhou*

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

The first total synthesis of goniodiol-8-monoacetate, using the Sharpless asymmetric epoxidation starting from cinnamyl alcohol in twelve steps with an overall yield of 7%, is achieved.

In 1992, a novel bioactive styryl lactone, goniodiol-8-monoacetate 1, was isolated from the leaves of *Goniothalamus amuyon*,¹ and shown to have significant cytotoxic activities toward several human tumour cells. The structure and relative configuration of 1 have been determined by spectroscopic studies.¹ As a part of our work on styryl lactones, we report herein the first asymmetric total synthesis of 1.

Scheme 1 Reagents and conditions: i, TBHP, Ti(OPrⁱ)4, L-(+)-DIPT, 4 Å molecular sieves, CH_2Cl_2 , $-20 \,^{\circ}C$, 86%; ii, Ti(OAc)(OPrⁱ)3, $CHCl_3$, -20 to 0 $^{\circ}C$, 90%; iii, 1 mol dm⁻³ HCl, silica gel, THF, room temp., 84%; iv, Me₂C(OMe)₂, *p*-TsOH, CH_2Cl_2 , room temp., 8 h; v, 15% NaOH, THF, H₂O, room temp., 90% from 5; vi, Me₂SO, (COCl)₂, Et₃N, CH_2Cl_2 , -78 to $-20 \,^{\circ}C$ then 2-lithiofuran, THF, -78 to $-30 \,^{\circ}C$, 74%; vii, TBHP, VO(acac)₂, CH_2Cl_2 , 0 $^{\circ}C$, 84%; viii, CrO₃, HOAc, 25–30 $^{\circ}C$, 15 min; then NaBH(OAc)₃, PriOH–HOAc (1 : 1), $-10 \,^{\circ}C$ to room temp., 60%; ix, Ac₂O, Py, DMAP, CH₂Cl₂, room temp., 4 h, 88%; xii, TFA, H₂O, room temp., 4 h, then Ac₂O, py, DMAP, CH₂Cl₂, 0 $^{\circ}C$ to room temp., 44%

The catalytic Sharpless asymmetric epoxidation² of cinnamyl alcohol 2 using L-(+)-diisopropyl tartrate [0.1 equiv.; 0.05 equiv. Ti(OPr)₄, 4 Å molecular sieves] as chiral ligand yielded 2α , 3α -epoxyalcohol **3** in 86% yield, mp 50–51°C, $[\alpha]_D^{20}$ –50.9 (*c* 1.3, CHCl₃), {lit.³ mp 51–52 °C, $[\alpha]_D^{20}$ –51.7 (*c* 1.2, CHCl₃)}. Highly regioselective cleavage of the oxirane ring of 3 with triisopropoxytitanium acetate⁴ successfully afforded acetate 4 in 90% yield, $[\alpha]_{D}^{20}$ -77.2 (c 1.9, CHCl₃). Acid treatment of **4** with silica gel and HCl in THF caused the migration of the acetoxy group from the secondary to the primary hydroxy group to provide acetate 5 in 84% yield, $\dagger [\alpha]_D^{20} - 83.1$ (c 1.1, CHCl₃). Protection of the diol 5 with 2,2-dimethoxypropane followed by deacetoxylation with 15% aq. NaOH in THF afforded the alcohol 7 in 90% overall yield from 5, mp 57–58 °C, $[\alpha]_D^{20}$ –112 (c 1.2, CHCl₃), 98% ee.‡ The conversion of 4 into 7 by the route in Scheme 2 gave a product with an identical $[\alpha]_D^{20}$. The optical purity of 7 was determined by GC (98% enantiomeric excess) on a chiral column (Cydex-B). Swern oxidation afforded a unstable aldehyde, which was immediately treated with 2-furyllithium⁵ to give the syn-adduct 8 as colourless prisms§ in 74% yield, together with the anti-adduct as an oil in 2.4% yield. The syn-configuration in compound 8 was confirmed by X-ray diffraction analysis (Fig. 1).

Oxidation of furylmethanol 8 with *tert*-butylhydroperoxide in the presence of VO(acac)₂ gave compound 9 as a mixture of α - and β -anomers. Oxidation of 9 with chromium(v1) oxide in acetic acid followed by immediate reduction with sodium triacetoxyborohydride⁶ in one pot furnished the allyl alcohol 10 in 60% yield. Acetylation of 10 with acetic anhydride furnished the acetate 11 in 98% yield. Reductive deacetoxylation of acetate 11 with zinc amalgam in ethereal hydrogen chloride⁷

Scheme 2 Reagents and conditions: i, TBDPSCl, imidazole, THF, room temp.; ii, 15% NaOH, THF, H₂O, room temp.; iii, Me₂C(OMe)₂, p-MeC₆H₄SO₃H, CH₂Cl₂, room temp.; iv, Buⁿ₄NF, THF, 0 °C

Fig. 1 Molecular structure of 8

gave the olefin **12** in 87% yield.§ Reconjugation of **12** with DBU produced the lactone **13** in 85% yield (reconjugation of **12** with triethylamine only gave poor yield),⁸ mp 133–134 °C, $[\alpha]_D^{20} -100$ (*c* 0.9, EtOH). Hydrolysis of ketal **13** with trifluoroacetic acid and water (3:1) followed by acetylation of **13** with acetic anhydride afforded **1** in 44% overall yield in two steps, mp 110–111 °C, $[\alpha]_D^{20} + 44$ (*c* 0.3, CHCl₃), {lit.¹ mp 111–113 °C, $[\alpha]_D^{20} + 43$ (*c* 0.1, CHCl₃)}, and another natural styryl lactone, goniodiol diacetate **14**,⁹ in 38% overall yield, mp 150–151 °C, $[\alpha]_D^{20} + 82$ (*c* 0.5, CHCl₃) {lit.¹¹ mp 150 °C, $[\alpha]_D^{20} + 84.5$ (CHCl₃)}.

Since the spectroscopic data of the synthetic 1 are in accord with the data for natural 1^1 and the X-ray diffraction analysis of **8** is determined, the absolute configuration of the goniodiol-8-monoacetate is confirmed as 1.

This research was supported by the National Science Foundation of China. We thank Mr J. Sen for X-ray diffraction analysis and Mr G.-Z. Guo for GLC analysis on a chiral column.

Received, 28th November 1994; Com. 4/07216B

Footnotes

 \dagger It has been reported⁴ that the acetoxy groups on polyols have a proclivity to migrate from secondary to primary hydroxy groups with minimal loss of optical purity in mild alkaline medium.

[‡] The ee value was determined by GLC analysis on a chiral column (CYDEX-b).

 $Selected analytical data for 8: mp 90–91 °C, [\alpha]_D^{20} +14.3 (c 1.0, CHCl_3). IR v/cm⁻¹ 3400 (OH); ¹H NMR (300 MHz, CD₃COCD₃): <math>\delta$ 1.50 (3H, s,

Me), 1.65 (3H, s, Me), 4.17 (1H, d, J = 8.0 Hz, 1-H), 4.85 (1H, dd, J = 7.0, 8.0 Hz, 2-H), 5.22 (1H, d, J = 7.0 Hz, 3-H), 5.89 (1H, d, J = 3.3 Hz, furyl), 6.19 (1H, dd, J = 1.8, 3.3 Hz, furyl), 7.08–7.29 (6H, m, Ph, furyl); MS(EI) m/z: 274 (M⁺), 216 (M⁺ – Me₂CO), 199 (M⁺ – Me₂CO – OH) (Calc. for C₁₆H₁₈O₄: C, 70.06, H, 6.61. Found: C, 70.26, H, 6.61%); for **12**: mp 131–132 °C, $[\alpha]_{D}^{20}$ – 152.6 (c 0.6, CHCl₃), ¹H NMR (300 MHz, CDCl₃): δ 1.48 (3H, s, Me), 1.63 (3H, s, Me), 2.85–3.05 (2H, m, 3-H), 4.39 (1H, dd, J = 7.4, 2.6 Hz, 7-H), 4.55 (1H, dd, J = 4.7, 2.6 Hz, 6-H), 5.39 (1H, d, J = 7.4 Hz, 8-H), 5.54 (1H, m, J = 9.9 Hz, 5-H), 5.78 (1H, m, J = 9.9 Hz, 4-H), 7.31–7.51 (5H, m, Ph); MS(EI) m/z: 274 (M⁺), 259 (M⁺ – Me₂CO); HRMS: Calc. for C₁₆H₁₈O₄ m/z 274.1205. Found 274.1190.

¶ The crystal of **8** was in the monoclinic system with space group $P2_1$ (no. 4) and the lattice parameters were precisely determined as a = 8.844(3), b = 9.883(1), c = 8.936(2) Å, $\beta = 111.24(2)^\circ$, U = 728.0(3) Å³, Z = 2, $D_c = 1.251$ g cm⁻³. Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 Y. C. Wu, F. R. Chang, C. Y. Dun, S. K. Wang and T. S. Wu, *Phytochem.*, 1992, **31**, 2851.
- 2 R. M. Hanson and K. B. Sharpless, J. Org. Chem., 1986, 51, 1922.
- 3 Z. M. Wang and W. S. Zhou, Tetrahedron, 1987, 43, 2935.
- 4 Y. E. Raifeld, K. Nikitenko and B. M. Arshava, *Tetrahedron*, 1993, 49, 2509.
- 5 W. S. Zhou and Q. S. Ge, Scientia Sinica, Ser. B, 1989, 337.
- 6 M. Tsubuki, K. Kanai and T. Honda, J. Chem. Soc., Chem. Commun., 1992, 1640.
- 7 T. Honda, M. Imai, K. Keino and M. Tsubuki, J. Chem. Soc., Perkin Trans. 1, 1990, 2677.
- 8 B. D. Roth and W. H. Roark, Tetrahedron Lett., 1988, 29, 1255.
- 9 S. K. Talapatra, D. Basu, T. Ded, S. Goswami and B. Talapatra, *Indian J. Chem.*, Sect. B, 1985, 24, 29.