Tricarbollides—Compounds of the Eleven-vertex Series of Tricarbaboranes

Bohumil Štíbr,*^{a,b} Josef Holub,^b Francesc Teixidor*^a and Clara Viñas^a

^a Institut de Ciencia de Materials, Campus UAB, 08193 Bellaterra, Spain

^b Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic

Alternative syntheses of the zwitterionic compounds 7-L-*nido*-7,8,9-C₃B₈H₁₀ (where L = H₂N⁻, Me₃N, and Bu^tNH₂) are reported from reactions involving the [*nido*-5,6-C₂B₈H₁₁]⁻ anion, the CN⁻ anion and/or alkyl isocyanides RNC (for R = Bu^t); deamination of the Me₃N derivative leads to the first unsubstituted eleven-vertex tricarbaboranes *nido*-7,8,9-C₃B₈H₁₂ and [*nido*-7,8,9-C₃B₈H₁₁]⁻.

The cyanide anion¹ and isonitriles² have been previously shown to be susceptible to nucleophilic attack by polyhedral boron hydrides in the endo-substitution manner, resulting in the insertion of the carbon atom into the cluster area. A high-yield monocarbon-insertion reaction has been observed more recently between the $[arachno-4, 6-C_2B_7H_{12}]^-$ anion and acetonitrile^{3,4} or polarized alkynes⁴ by Sneddon's group. These reactions yielded a large number of C-alkylated compounds of the nine- and ten-vertex tricarbaborane series3-5 and thus greatly enriched the largely unexplored class of tricarbaborane and metallatricarbaborane clusters.⁶⁻⁹ The only parent (unsubstituted) tricarbaboranes so far reported have been the uniquely structured compounds closo-C₃B₅H₇¹⁰ and hypho- $C_3B_4H_{12}$.¹¹ Here we report our preliminary results on the reactions involving the [*nido*-5,6-C_2B_8H_{11}]⁻ anion,¹² cyanide anion and/or alkyl isocyanides that lead to a number of the long expected compounds of the eleven-vertex nido tricarbollide series, zwitterionic derivatives 7-L-nido-7,8,9-C₃B₈H₁₀ (where L = amines) and to the parent tricarbaboranes $7,8,9-C_3B_8H_{12}$ and [7,8,9-C₃B₈H₁₁]⁻

Reaction between the $[nido-5,6-C_2B_8H_{11}]^-$ anion 1,¹² generated *in situ* by treatment of the hexane solution of the neutral 5,6-C_2B_8H_{12} (reaction scale 10 mmol) with 2 equiv. aqueous NaCN at ambient temperature for 24 h, followed by precipitation with aqueous NMe₄Cl, has led to the isolation of NMe₄+[7-H₂N-nido-7,8,9-C_3B_8H_{10}]^- [compound **2a** of general structure **2** in Scheme 1, paths *a* and *b*, R = free electron pair] in 30% yield [see also eqn. (1)]. Alternatively, treatment of the

$$[C_2B_8H_{11}]^- + CN^- + H_2O \rightarrow [H_2N-C_3B_8H_{10}]^- + OH^-$$
(1)
1
2a

aqueous layer by Me_2SO_4 in alkaline medium, followed by filtration of the precipitate and its purification by preparative TLC, using 5% MeCN-CH₂Cl₂ as the mobile phase [R_f (prep.) 0.30], has led to the isolation of 7-Me₃N-*nido*-7,8,9-C₃B₈H₁₀ **2b** (yield 27%, based on carbaborane 1 used).

Another source of the zwitterionic compounds of type 2 is provided by the synthesis involving anion 1 (Na⁺ salt, generated *in situ* by treatment of carbaborane 1 with NaH, reaction scale 4 mmol) and Bu^tNC in glyme (1,2-dimethoxyethane) [room temp., 2 d, see eqn. (2) for R = Bu^t], followed by evaporation

$$[C_{2}B_{8}H_{11}]^{-} + RNC \rightarrow [RNH-C_{3}B_{8}H_{10}]^{-} \xrightarrow{H^{+}} RNH_{2}-C_{3}B_{8}H_{10}$$

$$(2)$$

$$1 \qquad 2c^{-} \qquad 2c$$

of the solvent, addition of equal amounts of CH₂Cl₂ and water, and acidification with diluted hydrochloric acid [path *b*]. This resulted in the isolation of 7-Bu'NH₂-*nido*-7,8,9-C₃B₈H₁₀ **2c** from the dichloromethane extracts [yield 53% upon purification by preparative TLC in 100% CH₂Cl₂, R_f (prep.) 0.1]. Methylation of compound **2c** (reaction scale 1.5 mmol) with excess MeI (4 equiv.) in the presence of *ca.* 4 equiv. NaH in glyme (reflux for 2 h), followed by evaporation of the solvent, addition of water and repeated extraction with 50% MeCN–CH₂Cl₂, led to the isolation of the trimethylamine derivative **2b** as the main product. This was isolated in 37% yield by preparative TLC [5% MeCN–CH₂Cl₂, R_f (prep.) 0.30] from the organic layer. Other chromatographic fractions yielded 7-Bu^tNHMe-7,8,9-C₃B₈H₁₀ and methylated derivatives of **3**, which will be characterized in more detail in a full paper.

The Me₃N functionality in **2b** was removed by treatment with 2 equiv. sodium metal (reaction scale 10 mmol) in THF (room temp., 24 h) in the presence of naphthalene. The anticipated Na₂[7,8,9-C₃B₈H₁₀] intermediate thus formed was then decomposed with a slight excess of water and the THF evaporated. Addition of hexane and CF₃CO₂H (ca. 3 equiv.), followed by evaporation of the hexane, TLC chromatography [100% hexane, $R_{\rm f}$ (prep.) 0.20], and sublimation of the solid residue in vacuo at ca. 60 °C, yielded the neutral tricarbaborane nido- $7,8,9-C_3B_8H_{12}$ 3 [path c] in 60% yield (based on 2b). Deprotonation of 3 in the NMR tube in CD₃CN with a threefold excess of proton sponge [PS, 1,8-(Me₂N)₂C₁₀H₆] led to complete removal of the μ H(10,11) bridging hydrogen and to quantitative formation of the parent 'tricarbollide' anion [nido-7,8,9-C₃B₈H₁₁]⁻ **4** [path d]. The crystalline salt [PSH]⁺ [*nido*-7,8,9-C₃B₈H₁₁]⁻ can be obtained by the addition of 1 equiv. PS to a CH_2Cl_2 solution of compound 3 that was overlaid by a twofold amount of hexane.

As shown in Scheme 1, the formation of compounds of type 2 is consistent with the hydrogenation of the highly polarized isonitrile/cyanide N=C triple bond by the bridging proton of anion 1 under concomitant attack of the nucleophilic isonitrile/ cyanide carbon at the electrophilic^{3,4} C(6) centre of 1 and insertion of this carbon into the cluster area under the formation of anions 2^- (for R = free electron pair or Bu^t). Protonation of 2^- leads directly to either anion 2a or the zwitterionic compound 2b.

The constitution of the tricarbaborane compounds discussed above has so far been based on high-field multinuclear,

selective, and [11B-11B] COSY NMR measurements.[†] These have confirmed unambiguously a cluster configuration with three {CH} cluster units in adjacent positions within the open pentagonal face of the eleven-vertex nido cage. As seen in Fig. 1, the ¹¹B NMR shifts for the neutral carbaborane 3 correlate only approximately with those for the isoelectronic, but not isostructural, anion $[nido-7, 8-C_2B_9H_{12}]^-$ 5,¹³ evidently owing to the different character of the 'extra' hydrogen atom in both species. Unfortunately, the absence of the corresponding data for the nido 'dicarbollide'¹⁴ dianion [7,8-C₂B₉H₁₁]²⁻ does not permit straightforward comparison to the ¹¹B shielding patterns for the isostructural compounds of type 2 and for the parent anion 4. Noticeable are the remarkable upfield shifts of the highfield ¹¹B(1) and ¹¹B(2,5) resonances ($\Delta\delta$ ca. 12 and 16 ppm, respectively) as a consequence of the removal of the bridging proton from compound 3, whereupon the spectrum of the anion 4 re-adopts the original features characteristic for the isostructural compounds of type 2. Mass spectra† of the zwitterionic compounds of type 2 and of the neutral tricarbaborane 3 exhibit, besides other fragmentation patterns, the expected highmass molecular cut-off corresponding to the highest isotopomer of the proposed molecular ion.

The compounds described above are, as far as we are aware, the first representatives of the long expected eleven-vertex *nido* family of tricarbaboranes; species of type **2** and the parent anion **4** being isostructural analogues of the 'dicarbollide'¹⁴ anion $[7,8-C_2B_9H_{11}]^{2-}$. The straightforward availability of these stable compounds from $5,6-C_2B_8H_{12}$ makes them accessible for further investigations, such as isomerisation, boron degradation and, in particular, metal insertion reactions. Relevant researches into these new areas of carbaborane chemistry are in progress.

We thank the Spanish Government (Grant SAB94–0067 to B. Š.), the CIRIT (project QNF92-43B) and the Grant Agency

Fig. 1 Stick representations of the chemical shifts and relative intensities in the ¹¹B NMR spectra of the eleven-vertex nido compounds 7-L-7,8,9-C₃B₈H₁₀ [where L = H_2N^- 2a, Me₃N 2b, and Bu'NH₂ 2c], [7,8,9-C₃B₈H₁₁]⁻ 4, 7,8,9-C₃B₈H₁₂ 3, and [7,8-C₂B₉H₁₂]⁻ 5. Hatched lines interconnect equivalent positions in all compounds under comparison.

of the Academy of Sciences of the Czech Republic (Grant No. 432402) for support (to B. Š. and J. H.) and Drs J. Fusek and Z. Plzák for partial NMR measurements and mass spectra.

Received, 17th January 1995; Com. 5/00295H

Footnote

† Spectroscopic data. NMR data for compounds of types 2, 3, and 4 {assignment, $\delta(^{11}B)$ [$\delta(^{1}H)$]} in CD₃CN solutions at 294–303 K: For 2a $(NMe_4^+ \text{ salt}) BH(6), -16.1 [+0.98]; BH(2,11), -16.8 [+1.25, +1.11];$ BH(10), -17.3 [+1.44]; BH(4), -19.8 [1.58]; BH(3,5), -24.1 [+1.49, +0.91]; BH(1), -47.0 [+0.08]; for 2b BH(6,11), -16.2 [+1.32, +1.09]; BH(2), -18.0 [+1.72]; BH(10), -19.2 [+1.42]; BH(4,5), -21.9 [+1.9, +1.17]; BH(3), -23.7 [+1.60]; BH(1), -47.2 [+0.18]; for 2c [²H₆]acetone BH(6), -14.0 [+1.29]; BH(11), -14.9 [+1.49]; BH(2,10), -18.5 [+1.49, ca, +1.6]; BH(3), -20.2 [+1.66]; BH(4,5), -22.7 [+1.14, ca. +1.60]; -47.1 [+0.18]; for 3 BH(2,5) +0.45 [+2.65]; BH(3,4), -19.0 BH(1). · [+1.85]; BH(10,11), -20.0 [+1.84]; BH(6), -25.9 [+0.91]; BH(1) -35.2 [+1.15]; for 4 BH(6), -15.5 [+0.97]; BH(10,11), -16.6 [+1.55]; BH(2,5), -20.6 [+1.09]; BH(3,4), -23.6 [+1.47]; BH(1), -47.4 [+0.05]; NMR assignments [tentative for compounds of type 2 owing to closely spaced resonances in the range of $\delta(^{11}B)$ ca. -14 to -24] by [$^{11}B-^{11}B$] COSY experiments and ${}^{1}H{}^{11}B(selective)}$ spectroscopy. Additional $\delta({}^{1}H)$ data for: 2a NMe₄⁺ +3.50 (12 H), H₂N +3.07 (2 H), CH(9) +2.51, CH(8) +1.58; for 2b NMe₃+3.09 (9 H), CH(9) +2.70, CH(8) +1.79; for 2c H₂N +7.57 (br, 2 H), CH(9) +2.82, But + 1.62, CH(8) +1.78; for 3 CH(8) +3.76, CH(7,9) +3.08, μH(10,11) -2.13; for 4 CH(7,9) +2.15, CH(8) +1.48. MS (70 eV EI ionisation): for **2b** m/z_{max} 193 (11%, M⁺), 59 (32%, NMe₃⁺); for **2c** m/z_{max} 207 (4%, M⁺), 192 [50%, (M-Me)⁺], 57 (28%, Bu^t); for 3 m/z_{max} 136 (3%, M+).

References

- 1 W. Knoth, J. Am. Chem. Soc., 1967, 89, 1274; Inorg. Chem., 1971, 10, 598.
- 2 D. E. Hyatt, D. A. Owen and L. J. Todd, *Inorg. Chem.*, 1966, 5, 1749.
- 3 S. O. Kang, G. T. Furst and L. G. Sneddon, *Inorg. Chem.*, 1989, 28, 2339.
- 4 A. Plumb, P. J. Carroll and L. G. Sneddon, *Organometallics*, 1992, 11, 1665; K. Su, P. J. Carroll and L. G. Sneddon, *J. Am. Chem. Soc.*, 1992, 114, 2730; 1993, 115, 10004.
- 5 C. A. Plumb, P. J. Carroll and L. G. Sneddon, *Organometallics*, 1992, 11, 1672; C. A. Plumb and L. G. Sneddon, *Organometallics*, 1992, 11, 1681.
- C. L. Bramlett and R. N. Grimes, J. Am. Chem. Soc., 1966, 88, 4269;
 R. N. Grimes and C. L. Bramlett, J. Am. Chem. Soc., 1967, 89, 2557;
 R. N. Grimes, C. L. Bramlett and R. L. Vance, Inorg. Chem., 1968, 7, 1066.
- 7 J. M. Howard and R. N. Grimes, J. Am. Chem. Soc., 1969, 91, 6499; Inorg. Chem., 1972, 11, 263.
- 8 T. Kuhlmann, H. Pritzkow, U. Zenneck and W. Siebert, Angew. Chem., Int. Ed. Engl., 1984, 23, 965; J. Zwecker, H. Pritzkow, U. Zenneck and W. Siebert, Angew. Chem., Int. Ed. Engl., 1986, 25, 1099; J. Zwecker, T. Kuhlmann, H. Pritzkow, W. Siebert and U. Zenneck, Organometallics, 1988, 7, 2316.
- 9 J. J. Briguglio and L. G. Sneddon, Organometallics, 1986, 5, 327.
- M. Thompson and R. N. Grimes, J. Am. Chem. Soc., 1971, 93, 6677.
 R. Greatrex, N. N. Greenwood and M. Kirk, J. Chem. Soc., Chem. Commun., 1991, 1510.
- 12 J. Plešek and S. Heřmánek, Collect. Czech. Chem. Commun., 1974, 39, 821; B. Štíbr, J. Plešek and A. Zobáčová, Polyhedron, 1982, 1, 824.
- 13 See, for example: R. A. Wiesboeck and M. F. Hawthorne, J. Am. Chem. Soc., 1964, 86, 1642; M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe and P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 862; J. Plešek, S. Heřmánek and B. Štíbr, Inorg. Synth., 1983, 22, 231; X. L. R. Fontaine, N. N. Greenwood, S. Heřmánek, T. Jelínek, J. D. Kennedy, K. Nestor, B. Štíbr and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1990, 681.
- 14 For review see: G. B. Dunks and M. F. Hawthorne, in *Boron Hydride Chemistry*, ed. E. L. Muetterties, Academic, New York, 1975, ch. 11, pp. 383–430; R. N. Grimes, in *Organometallic Reactions and Syntheses*, vol. 6, ed. E. I. Becker and M. Tsutsui, Plenum, New York, 1977, ch. 2, pp. 63–221; R. N. Grimes, in *Comprehensive Organometallic Chemistry*, ed. G. Wilkinson, F. G. A. Stone and E. Abel, Pergamon, 1982, part I, ch. 5.5, pp. 459–542.