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Synthetic Studies Related to the Esperamicin/Calicheamicin Aglycone: Efficient 
Construction of a Homochiral Oxabicyclo [7 : 3 : I] Analogue from D-Xylose 
Isabelle Dancy, Troels Skrydstrup, Christophe Crevisy and Jean-Marie Beau*t 
Universite d'Orleans, Laboratoire de Biochimie Structurale, URA CNRS 499, BP 6759, 45067 Orleans Cedex 2, France 

The synthesis of a bicyclic model of the calicheamicin/esperamicin aglycone is described using a highly efficient and 
stereospecific Nozaki-Kishi reaction for the ring closure. 

A great deal of work has been in progress on the recently 
discovered enediyne antibiotics calicheamicin yl1 and esper- 
amicin A1.l These antibiotics not only have remarkable DNA 
cleaving abilities involving an aryl diradical intermediate, but 
also enormous potential as selective antitumour agents. In- 
vestigating the DNA binding properties of the common 
trisaccharide motif of these substances is a current goal in our 
group. Several seminal studies have already been reported in 
this area2-8 and have revealed that in addition to the oligo- 
saccharide component, the enediyne moiety may also contribute 
to the overall binding energy to specific four base-pair 
sequences of DNA d~p lexes .~  To obtain a better understanding 
of the factors involved in the contribution of the aglycone-DNA 
binding, it is important that model compounds be available for 
comparative studies. Compound 1 could represent a potential 
model for such investigations. We recently reported the total 
synthesis of the required trisaccharide fragment found in 
esperamicin A19 and now disclose the synthesis of the novel 
r7.3. I] bicyclic model 2 of the calicheamicin/esperamicin 
aglycone in enantiomerically pure form, which includes a 
highly efficient NiII-CrII-mediated cyclization as a key step. 
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The preparation of aglycone 2 was conceived using a three- 
component strategy starting from fragments A, B and C, with A 
being derived from D-xylose. 

The synthesis of 2 (Scheme 1) began with the selective 
protection of the C-2 and C-3 hydroxy groups of tert-butyl 
1 -thio-D-xylopyranoside with 2-methoxypropene providing a 
separable 8 : 1 mixture of ketal3t and its C-3, C-4 regioisomer. 
Dess-Martin oxidationlo gave the labile ketone 4 which, 
without chromatographic purification, was immediately con- 
densed with the cerium(II1) reagent of the TDS-protected (TDS 
= thexyldimethylsilyl) benzodiynyl anion 5 at -78 "C.$ This 
provided alcohol 67 as a single stereoisomer at C-4 in a 62% 
yield for the two steps. The configuration at C-4 was assessed 
by comparing the lH NMR spectra of 11, prepared by reacting 
the trimethylsilyl-acetylide anion and ketone 4 (Scheme 2) with 
that of 6. Both compounds showed long-range coupling 
constants between the OH-4 hydrogen and H-5, (1.8 Hz in 6 
and 1.5 Hz in 11) in a 4C1 conformation, diagnostic of the axial 
orientation of OH-4. This assignment was further confirmed by 
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Scheme 1 Reagents and conditions: i, 2-methoxypropene, catalytic 
camphorsulfonic acid, DMF, 60 O C ,  workup with MeOH, 80% plus 10% of 
the 2,3-regioisomer; ii, Dess-Martin periodinane (1.8 equiv.), room temp., 
2 h; iii, 5 (1.3 equiv.), THF, -78 "C, 10 min, 62% from 3; iv, MCPBA (3 
equiv.), NaHC03 (5  equiv.), CH2C12, room temp., 30 min, 83%; v, BuLi 
(3.5 equiv.), THF, -78 to -40 OC, 1 h, 77%; vi, MeI, NaH, THF, room 
temp., 2 h, 89%; vii, LDA (1.4 equiv.), THF, -78 "C, 15 min then HCHO, 
80%; viii, Bu4NF, THF, room temp., 15 min, 96%; ix, 12-morpholine, PhH, 
45 OC, 2 h, 85%; x, PCC (2 equiv.), AcONa (3 equiv.), 3 8, molecular sieves, 
CH2C12,45 min, 82%; xi, CrC12 (10 equiv.), NiC12 (0.1 equiv.), THF, room 
temp., 95% 
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Scheme 2 Reagents and conditions: i, cerium dichloride trimethylsilyl- 
acetylide (1.4 equiv.), THF, -78 "C, 15 min, 67% from 3; ii, H2, Lindlar 
catalyst, hexane : THF 1 : 2, room temp., 1.5 h, 47% 

the NOE contact observed between H-3 and the vinylic H-6 in 
vinyl silane 12, obtained by reduction of 11. 

Oxidation of sulfide 6 to the corresponding sulfone followed 
by an elimination reaction upon exposure to 3 equiv. BuLi at 
-78 "C provided the vinyl sulfone 71 in 77% yield. The long- 
range coupling constant (J  1.3 Hz) between the H-3 and H-5,, 
protons (W-effect) suggests a conformation in which the 
benzodiyne moiety in 7 is axially orientated, a favourable 
situation for the subsequent cyclization reaction. Methylation of 
diol7 afforded 8 in a high yield which was lithiated at C-2 with 
lithium diisopropylamide at -78 "C and treated with gaseous 
formaldehyde to give alcohol 9 in 80% yield. Use of BuLi led 
to less reproducible yields. At this point, the choice of the tert- 
butyl sulfone group was justified since the above sequence 
using the corresponding phenyl sulfone led to a significantly 
competitive hydroxymethylation at the ortho position of the 
aromatic ring. 

With the C-2 carbon branch introduced, the stage was set for 
the ring closure step. Although a base-promoted cyclization also 
appeared to be a viable method,' the possibility of employing a 
CrILNiII-mediatedll ring closure reaction to the [7.3. I] bicyclic 
strained structure attracted our attention. This choice was based 
on our previously reported reaction for the preparation of 
strained monocyclic 10-membered enediyne rings,l2 which has 
been successfully employed since in other enediyne sys- 
tems.13 

Thus, benzodiyne 9 was desilylated, transformed into the 
corresponding iodoalkyne and oxidized under standard condi- 
tions to afford 101 in 67% overall yield. Upon slow addition (25 
min) of 10 to a suspension of CrC12 (10 equiv.) containing 1% 
NiClz in THF at 20 OC, complete consumption was observed 
with the appearance of a single isomer characterized as 211 (R = 
But) in 95% yield after column chromatography. The R- 
configuration at C-6, identical to that of esperamicin and 
calicheamicin, was established by X-ray crystallographic 
analysis. This facile and stereospecific ring closure may be 
attributed to: (i) the axial orientation of the benzodiyne subunit 
in 10 observed (as for 7) through a H-3, H-5,, coupling constant 
in the lH NMR spectrum; and (ii) a highly-biased S-trans 
conformation for the unsaturated aldehyde maintained by the 
bulky tert-butyl sulfone group, thus leading to the appropriate 
stereochemistry at C-6. Further work in the preparation of an 
enediyne analogue to 2 and subsequent coupling with the 
trisaccharide will be reported. 14 
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Footnotes 
f Present address: Laboratoire de Synthhse de BiomolCcules URA CNRS 
462, Institut de Chimie MolCculaire, Bit. 430, UniversitC de Paris Sud, 
91405 Orsay Cedex, France. 
$ All new compounds gave satisfactory spectral and analytical data. 
5 The cerium(Ir1) reagent 5 of the benzodiyne unit was prepared by iterative 
palladium(0) catalysed coupling reactions from o-dibromobenzene as 
follows: i, thexyldimethylsilylacetylene (1.2 equiv.), Pd(PPh3)4 (0.05 
equiv.), CuI (0.07 equiv.), n-PrNH2 (1.8 equiv.), PhMe, 90 "C, 5 h, 63%; ii, 
excess trimethylsilylacetylene, Pd(PPh3)4 (0.1 equiv.), CuI (0.05 equiv.), n- 
PrNH2 ( 5  equiv.), PhMe, 110 "C in a sealed system, 1.5 h, 87%; iii, K2C03 
(1.2 equiv.), MeOH: CH2C12 (10: 1, vh), room temp., 45 min, 88%; iv, 
BuLi (1 equiv.), THF, -78 "C, 30 min then transfer to CeC13 (1 equiv.) in 
suspension in THF, -78 OC, 45 min. 
fl Selected 1H NMR data (CDC13, 300 MHz; numbering of protons is that of 
carbohydrate numbering). For 6 6 0.27 (s, 6 H, SiMez), 0.95 (d, 6 H, J 7 Hz, 
thexyl), 0.97 (s, 6 H, thexyl), 1.43 (s, 9 H, SBut), 1.50 and 1.52 (2 s, 6 H, 2 
Me), 2.58 (d, 1 H, JOH,5, 1.8 Hz, OH), 3.73 (dd, 1 H,J5,,5eq 12.5 Hz, H- 

1 H, H-5,,), 4.86 (d, 1 H, H-1). For 7: 6 3.08 (bs, 2 H, OH), 4.19 (dd, 1 H, 

H-3), 5.98 (d, 1 H, H-2). For 10: 6 1.39 (s, 9 H, But), 3.56 and 3.63 (2 s, 6 
H, 2 OMe), 4.37 (d, 1 H,J5,,5eq 10 Hz, H-5,), 4.45 (dd, 1 H, J3,5eq 1.8 Hz, 

)I Prepared on a 0.3 mmol scale; mp 105 "C, [aID20 -301 (c 1, CHCl,); 1H 
NMR (CDC13, 300 MHz; numbering of protons is that of carbohydrate 
numbering): 6 1.37 (s, 9 H, But), 3.53 and 3.62 (2 s, 6 H, 2 OMe), 4.31 (dd, 

5,), 3.75 (d, 1 H, J2,3 9.2 Hz, H-3), 3.82 (t, 1 H, J1,2 9.2 Hz, H-2), 4.14 (d, 

J3,5eq 1.3,J5,,5eq 11.5 Hz, H-5,,), 4.33 (d, 1 H, H-5,), 4.60 (dd,J2.3 3.5 Hz, 

H-5eq), 4.81 (d, 1 H, H-3), 8.47 (s, 1 H, CHO). 

1 H, J3,5eq 1.2, J5ax,5eq 10.2 Hz, H-5,,), 4.36 (d, 1 H, H-5,), 4.70 (d, 1 H, 
H-3), 6.82 (s, 1 H, H-6). 
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