Thienoquinonoid-extended Analogues of Bis(alky1enedithio)tetrathiafulvalenes and their Conductive Complexes

Kazuko Takahashi" and Kensuke Tomitani

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980-77, Japan

Three thienoquinonoid-extended analogues of bis(alkylenedithio)tetrathiafulvalenes, which are symmetric and unsymmetric conjugation-elongated donors, are synthesized and TCNQ complexes of these donors are proved to exhibit a metallic temperature dependence or a fairly high room temperature conductivity even when measured on compressed powder samples.

Bis(ethy1enedithio)tetrathiafulvalene (BEDT-TTF) has been recognized as the most promising synthetic component of organic superconductors owing to its ability to produce two $dimensional$ conducting layers¹ with high superconducting transition temperatures (T_c) .² Recently, it has been pointed out that the T_c s of BEDT-TTF superconductors are proportional to the volume of the most effective space (V_{mes}) for the carrier distribution in the donor layer, which is composed of the C_6S_8 skeleton and intra-donor-layer overlaps between the atomic orbitals of the C_6S_8 π -systems.³ Donor molecules with a more elongated π -system than that of BEDT-TTF have been required3 in order to increase the *Vmes* and then to obtain high *T,* organic superconductors. **2,5-bis(4,5-Ethylenedithio-** 1,3-di**thiol-2-ylidene)-2,5-dihydrothiophene** (BEDT-BDTT, **l),** that is the **2,5-thienoquinonoid-extended** analogue of BEDT-TTF, would be a promising donor to satisfy such a requirement, since the large $C_{10}S_9$ moiety of BEDT-BDTT may contribute effectively to increase the V_{mes} in the conducting donor-layer of its metallic salts. With this motivation, herein we report the

ii, P(OMe)₃ in PhH, reflux, 18 h; iii, chloranil (1.4 equiv.) in xylene, reflux, **4** h; iv, chloranil **(1.1** equiv.) in xylene, reflux, **3** h

successful synthesis and electrochemical properties of three new conjugation-elongated donors with four outer-chalcogen atoms, **1, 2** and **3,** and the electrical properties of their conducting complexes. An elongated BEDT-TTF analogue, in which the central C=C bond of BEDT-TTF is replaced by an ethanediylidene moiety, has been synthesized by several groups,4 but the electric properties of its complexes have not yet been reported.

The new donors **1,2,** and **3** were synthesized according to the routes shown in Scheme 1. The cross-coupling reactions of **⁴⁵** with 2 equiv. of **5a** and **5b** afforded mono-capped ketones **6a** (44%) and **6b** (40%) with small amounts of bis-capped compounds **7** (17%) and **9** (3%), respectively. The second step, cross-coupling reactions of **6a** and **6b** with 3 equiv. of **5a** and **5b,** yielded bis-capped intermediates **7** (40%) and **9** (30%), respectively.? When **6b** was allowed to react with 3 equiv. of **5a,** the unsymmetric intermediate **8** was obtained in 34% yield, but in a lower yield of *ca.* 10% in the reaction of **6a** with **5b.** Chloranil has proved to be the most effective dehydrogenation reagent for **7, 8** and **9** giving **1 (64%), 2** *(60%),* and **3** (73%) in fairly good yields.[#]

The donors **1-3** are air-stable and exhibited two pairs of reversible one-electron redox waves in their CV (Fig. 1). The E_1^{ox} values of 1–3 (Table 1) are lower by 0.26–0.28 V than that of BEDT-TTF, indicating that the electron-donating ability is

Fig. 1 CV of *(a)* BEDT-BDTT **1** and *(b)* BPDT-BDTT **2:** donor *(ca.* 0.1 mmol **dm-3),** electrolyte Bu4NC104 *(ca.* 0.1 mol dm-3) in PhCN under argon at room temp. (scan rate: 50 mV **s-I),** reference electrode: **SCE**

	Electrochemical property ^a					Conductivity ^b and IR band ^c of the TCNQ complex		
Donor	E_{1} ox	E_2 ^{ox}	$\Delta E^{\rm ox}$	$log K_{sem}$	$D:A^d$	σ /Scm ⁻¹	v_{CN}/cm^{-1}	v_{CT}/cm^{-1}
	$+0.26$	$+0.34$	0.17	2.88	1:1	16	2197	3000 (br)
	$+0.24$	$+0.42$	0.18	3.05	1:1	1.8	2189	3000 (br)
	$+0.26$	$+0.44$	0.18	3.05	1:1	1.4	2189	3000 (br)
BDTT	$+0.11$	$+0.34$	0.23	3.90	1:1	6.9×10^{-3}	2125, 2152	5500 (br)
BEDT-TTF	$+0.52$	$+0.83$	0.31	5.25				

Table 1 Electrochemical data of donors and physical properties of their TCNQ complexes

² Potentials are given in V *vs.* SCE, determined by CV, 1.0 mmol dm⁻³ solutions in PhCN with 0.1 mol dm⁻³ Bu₄NCl₄: 50 mV s⁻¹. ^{*b*} Four-probe method on a compaction pellet measured at room temp. ϵ v_{CN} of TCNQ: 2224 cm⁻¹. *d* Determined by elemental analysis.

Fig. 2 Temperature dependence of the resistivity of the 1 : 1 TCNQ complex of BEDT-BDTT, 1 measured on a compaction pellet

oid moiety. The E_1^{ox} values of 1–3 are higher by 0.13–0.15 V than that of 2,5-bis(**1,3-dithio1-2-ylidene)-2,5-dihydrothio**phene (BDTT) having no outer-chalcogen atom.6 The positive charge appears to be delocalizing effectively on the outerchalcogen atoms in the dications of 1–3, since the ΔE^{ox} = $(E_2^{\text{ox}}-E_1^{\text{ox}})$ values of 1–3 are smaller than that of BDTT.

All these three donors **1-3** formed 1 : 1 molecular complexes with TCNQ, whose electric conductivities and characteristic IR bands are summarized in Table 1 along with the values for the
TCNQ complex of BDTT measured under the same conditions.
Interestingly, the room temperature conductivities of TCNQ
Mon complexes of **1-3** are 104-103 times higher than that of the TCNQ complex of BDTT. Moreover, the TCNQ complex of BEDT-BDTT showed a metallic temperature dependence of the conductivity down to **248** K and exhibited a semiconducting behaviour with very low activation energy of $E_a = 0.023$ eV at the temperature range of **240-80** K on the compressed pellet (Fig. 2). Thus the single crystal of the salt is expected to show metallic behaviour down to much lower temperatures.§

Thus, donors **1-3** are the first examples of the conjugationelongated analogues of **bis(alkylenedithio)tetrathiafulvalenes4~7** providing high or metallic conducting complexes.

The solid state electronic spectra of the TCNQ salts of **1-3** in KBr showed a very broad intrastack CT absorption band8 at around 3000 cm^{-1} indicating that these salts possess a segregated stacking mode in a mixed valence state. The degrees of CT estimated primarily from v_{CN} values (Table 1) using Chappell's equation⁹ are partial mode with $Z = 0.61$ for the TCNQ salt of **1** and **0.79** for the salts of **2** and **3.**

This work was supported by the Grant-in-Aid for Scientific Research on Priority Area of Molecular Conductors (No. **06243203)** from the Ministry of Education, Science and Culture, Japan and by the grant from the Shorai Foundation for Science and Technology.

Received, 13th December 1994; Corn. 4107566H

Footnotes

i- BEDT-TTF was formed as **a** by-product in 10-20% yields in these reactions.

 \ddagger Selected physical data: ⁽¹H NMR data: in CS₂-CDCl₃; UV-VIS data in THF) for 1: dark red brown powder, mp 170-175 °C (decomp.) ¹H NMR (200 MHz) 6 3.33 (8H, s, SCH2CH2S) and 6.30 (2H, s, thiH-3,4); MS *mlz* 466 (M⁺); UV λ_{max}/n m (log ε/dm^3 mol⁻¹ cm⁻¹) 504 (4.35), 473 (4.28) and 279 (4.13). **2:** dark-brown powder, mp 139-140 *"C* (decomp.); 1H NMR (600 MHz) δ 2.35 (2H, m, H- β), 2.70 (4H, t, H- α), 3.31 (4H, s, SCH₂CH₂S) and 6.28 (2H, br., thiH-3,4); MS m/z 480 (M⁺); UV λ_{max}/nm (log ε/dm^3 mol-' cm-l) 501 (4.50), 474 (4.45) and 274 (4.18). **3:** red brown powder, mp 240-241 "C (decomp.); IH NMR (200 MHz) 6 2.42 (4H, m, H-P), 2.71 (8H, t, H- α) and 6.25 (2H, br., thiH-3,4); MS m/z 494 (M⁺); UV λ_{max}/nm (log ε /dm³ mol⁻¹ cm⁻¹) 496 (4.60), 474 (4.58) and 271 (4.25).

9 Donors 1-3 have a bow-shaped structure, so the intrastack interactions may be somewhat weakened and the interstack interactions along the transverse direction may be strengthened comparatively. Such a donor may provide somewhat unstable metals which transfer easily to high T_c organic superconductors.

References

- **¹**G. Saito, *Phosphorus Sulfur Silicon Relut. Elem.,* 1992,67,345; *G.* Saito, *Pure Appl. Chem.,* 1987,59,999.
- 2 J. M. Williams, **A.** M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, J. M. Kommers, **S.** J. Boryschuk, **A.** V. **S.** Crouch, W. K. Kwok, J. E. Schirber, D. L. Overmyer, D. Jung and M.-H. Whangbo, *Inorg. Chem.*, 1990, 29, 3272; J. M. Williams, **A.** J. Schultz, U. Geiser, K. D. Carlson, **A.** M. Kini, H. H. Wang, W.-K. Kwok, M.-H. Whangbo and J. E. Schirber, *Science,* 1991, 252, 1501.
- 3 H. Yamochi, T. Komatsu, N. Matsukawa, G. Saito, T. Mori, M. Kusunoki and K. Sakaguchi, J. *Am. Chem. SOC.,* 1993, 115, 11319.
- 4 **T.** K. Hansen, M. V. Lakshmikantham, M. P. Cava, R. M. Metzger and J. Becher,J. *Org. Chem.,* 1991,56,2720; A. J. Moore, M. R. Bryce, D. J. Ando and M. B. Hursthouse, J. Chem. Soc., Chem. Commun., 1991, 320; V. Yu. Khodorkovskii, L. N. Veselova and 0. Ya. Neiland, *Khim. Geterotsikl. Soedin,* 1990, 130.
- *⁵*H. J. Jakobsen, E. H. Larsen and **S.** -0. Lawesson, *Tetrahedron,* 1963,19, 1867.
- 6 K. Takahashi, T. Nihira and K. Tomitani, J. Chem. Soc., Chem. *Commun.,* 1993, 1617.
- 7 T. K. Hansen, M. V. Lakshmikantham, M. **P.** Cava and J. Becher, J. *Chem. Soc., Perkin Trans. I,* 1991, 2873.
- 8 J. B. Torrance, B. **A.** Scott and F. B. Kaufman, *Solid State Commun.,* 1975,17,1369; J. Tanaka, M. Tanaka, T. Kawai, T. Takabe and 0. Maki, *Bull. Chem. SOC. fpn.,* 1976, 49, 2358.
- 9 J. **S.** Chappell, A. N. Block, W. A. Bryden, M. Maxfield, T. 0. Poehler and D. O. Cowan, *J. Am. Chem. Soc.*, 1981, 103, 2442.