Doubly Helical, Chiral Crown Thioether fully preorganized for Planar Coordination

Tatsuo Ueda, Tomohiro Adachi, Kumiko Sumiya and Toshikatsu Yoshida*
Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 593, Japan

Optically active 18 -membered quadridentate crown thioethers with double helicity, $(+)-(R, R)$ - and (-)-(S,S)-bitol $\mathrm{Me}_{4}[18] \mathrm{S}_{4}$ and the non-helical meso-compound are prepared and their reactions with ruthenium(॥) give trans-[RuCl ${ }_{2}\left\{(+)-(R, R)\right.$-bitol $\left.\left.{ }_{2} \mathrm{Me}_{4}[18] \mathrm{S}_{4}\right\}\right]$ and the meso-analogue of D_{2} and $C_{2 h}$ symmetries, respectively; free $(+)-(R, R)$-bitol ${ }_{2} \mathrm{Me}_{4}[18] \mathrm{S}_{4}$ and the racemic ruthenium(I) complex have been structurally characterized.

There is increasing interest in the transition metal complexes of crown thioethers; ${ }^{1}$ however, those of chiral crown thioethers are extremely rare. ${ }^{2}$ Here we report the preparation, characterization and optical resolution of an 18-membered quadridentate crown thioether bitol $_{2} \mathrm{Me}_{4}[18] \mathrm{S}_{4} 1$ and its coordination to ruthenium(II). The ligand 1 consists of two $2,2^{\prime}$-bitolyl-3, 3^{\prime} dithiolato groups bonded alternately to two 2,2 -dimethylpropane subunits. Incorporation of two structurally rigid and axially chiral bitolyl groups determines unequivocally doubly helical and non-helical arrays for the racemate and meso-isomer of $\mathbf{1}$, respectively. This is also the case for the ruthenium complexes trans- $\left[\mathrm{RuCl}_{2}\{(+)-(R, R)-1\}\right] \quad 2$ and trans$\left[\mathrm{RuCl}_{2}\{(R, S)-1\}\right]$ 3. The former represents the first example of an optically active and doubly helical transition metal complex containing sulfur ligands. Almost all helicates so far reported have been produced with open-chain and macrocyclic polydentate ligands containing nitrogen donors such as pyridine and bipyridine. ${ }^{3}$

The macrocycle 1 was prepared through S -alkylation of the disodium salt of (\pm)-2,2'-dimethyl-6, 6^{\prime}-disulfanylbiphenyl 4^{4} with 3-bromo-2,2-dimethylpropan-1-ol in EtOH under reflux, mesylation of the resulting diol 5 with mesyl chloride in pyridine, and cyclization of the dimesylate 6 with 4 in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF (Scheme 1). ${ }^{5}$ The total yield is 13.5%. Complete optical resolution of the three diastereo-

$4 \mathrm{R}=\mathrm{H}$
$5 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{OH}$

$(+)-(R, R)-1$
$(-)-(S, S)-1$
$+$

$(S, R)-1$

Scheme 1
isomers was achieved by HPLC with a column packed with cellulose tris(3,5-dimethylphenylcarbamate) on silica gel; 6 elution with 0.1% PriOH-hexane gave optically pure (-)-((S, S) 1, $(+)-(R, R)-1\left\{[\alpha]_{\mathrm{D}}{ }^{20}-157\right.$ and +152 (c 0.4, hexane), respectively) and the meso-compound $(R, S)-\mathbf{1}$ in a $1: 1: 2$ ratio. The absolute configuration of the two chiral diastereoisomers was deduced by comparing their CD spectra with those of ($6,6^{\prime}$ -dimethylbiphenylene-2,2'-diyl)bis(diphenylphosphine) ${ }^{7}$ and was determined unequivocally by an X-ray structural study for the $(+)-(R, R)$ enantiomer. $\dagger(+)-(R, R)-\mathbf{1}$ assumes a quadrangular structure of approximate D_{2} symmetry with an endo-orientation of all S atoms directed towards the centre of the macrocycle (Fig. 1). Owing to the inherent twist about the pivotal bond of $2,2^{\prime}$-bitolyl groups, the four S atoms adopt an up-down-updown conformation where up and down indicate the direction of the lone electron pair orbitals on the S atoms with respect to the approximately square plane (4 S) defined by the four S atoms. Two aromatic rings of the $2,2^{\prime}$-bitolyl groups are orthogonal with a mean dihedral angle of 87.8°. The corresponding angle between the least-squares 4 S plane and each aromatic ring is 79.3°. The non-bonded S...S distances of 3.873(6)-4.031(8) \AA are longer than the sum of the van der Waals radius ($3.7 \AA$). The D_{2} structure is retained in solution as deduced from ${ }^{1} \mathrm{H}$ NMR spectra of the two optically resolved enantiomers, which exhibit one Me singlet and two CH_{2} doublets due to the two $\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}$ groups. \ddagger The observation of two signals for each proton of the meso-compound is consistent with $C_{2 h}$ symmetry with an up-up-down-down (syn) conformation.

The X-ray structure suggests that the chiral crown thioether with double helicity is fully preorganized for planar coordination to metal ions. Indeed, treatment of $(+)-(R, R)-1$ with $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ in $\mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ under reflux for 24 h followed by chromatography (silica gel, CHCl_{3}) and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane gave trans- $\left[\mathrm{RuCl}_{2}\{(+)-(R, R)-1\}\right]$ (2) $\left\{[\alpha]_{\mathrm{D}}{ }^{20}+35\left(c 0.1, \mathrm{CHCl}_{3}\right)\right\}$ as reddish brown crystals in

Fig. 1 Molecular structure of $(+)-(R, R)-$ bitol $_{2} \mathrm{Me}_{4}[14] \mathrm{S}_{4}-\mathbf{1}$

Fig. 2 Molecular structure of trans- $\left[\mathrm{RuCl}_{2}\{(+)-(R, R)-\mathbf{1}\}\right] \mathbf{2}$ in the racemate Selected bond distances (\AA) and angles (${ }^{\circ}$): Ru-S(1) 2.373(7), Ru-S(6) 2.368(5), Ru-S(10) 2.361(7), Ru-S(15) 2.370(5), Ru-Cl(1) 2.417(5), Ru$\mathrm{Cl}(2)$ 2.395(5); S(1)-Ru-S(6) 89.0(2), S(1)-Ru-S(10) 179.1(2), S(1)-Ru$\mathrm{S}(15) 90.2(2), \mathrm{S}(6)-\mathrm{Ru}-\mathrm{S}(10) 90.2(2), \mathrm{S}(6)-\mathrm{Ru}-\mathrm{S}(15) 178.7(2), \mathrm{S}(10)-\mathrm{Ru}-$ $\mathrm{S}(15) \quad 90.7(2), \quad \mathrm{S}(1)-\mathrm{Ru}-\mathrm{Cl}(1) \quad 90.7(2), \quad \mathrm{S}(1)-\mathrm{Ru}-\mathrm{Cl}(2) \quad 89.7(2)$, $\mathrm{S}(6)-\mathrm{Ru}-\mathrm{Cl}(1) 89.8(2), \mathrm{S}(6)-\mathrm{Ru}-\mathrm{Cl}(2) 91.1(2), \mathrm{S}(10)-\mathrm{Ru}(\mathrm{Cl}(1) 89.6(2)$, $\mathrm{S}(10)-\mathrm{Ru}-\mathrm{Cl}(12) \quad 90.1(2), \quad \mathrm{S}(15)-\mathrm{Ru}-\mathrm{Cl}(1) \quad 89.2(2), \quad \mathrm{S}(15)-\mathrm{Ru}-\mathrm{Cl}(2)$ 89.9(2).
82% yield. A similar reaction with $(R, S)-\mathbf{1}$ afforded trans$\left[\operatorname{RuCl}_{2}\{(R, S)-\mathbf{1}\}\right]$ (3) (43% yield). The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ and 3 indicate D_{2} and $C_{2 h}$ structures as observed for the corresponding free ligands, respectively. \ddagger Although attempts to obtain a single crystal of 2 failed, recrystallization of the racemic mixture from toluene- EtOH gave crystals suitable for an X-ray analysis (Fig. 2). \ddagger The geometry at Ru is octahedral, with four S atoms in the equatorial plane and two Cl atoms in the axial sites. An up-down-up-down conformation of a coordinated quadridentate thiamacrocycle is rare, having a sole precedent in the seven-coordinate $\left[\mathrm{Hg}\left([16]\right.\right.$ ane $\left.\left._{4}\right)\left(\mathrm{ClO}_{4}\right)_{2}\right]$. ${ }^{9}$ The $\mathrm{Ru}-\mathrm{S}$ distance (average $2.368 \AA$) is significantly longer than those $[2.291(3)-2.308(2) \AA]$ found for the saturated quadridentate thiamacrocycle with a syn-conformation in trans$[\operatorname{RuH}(\mathrm{Cl})(\mathrm{L})] \quad\left(\mathrm{L}=\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}, \quad \mathrm{Me}_{6}[15]\right.$ aneS $\left._{4}\right)$ and $\left[\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right]^{2+} .{ }^{10}$ The $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl}$ angle $\left[179.1(2)^{\circ}\right]$ is essentially linear. To reduce the steric strain induced by the planar coordination, the dihedral angle (average 76.5°) between two tolyl planes becomes more acute than that of the free ligand, while the decrease in the corresponding angle (74.5°) between the 4 S and tolyl planes is not so extensive. As expected from the observed conformation of the thiamacrocycle, the Ru atom lies exactly in the least-squares 4 S plane, the deviation being only $0.009(5) \AA$.

The above results suggest that the $\mathrm{M}[(+)-(R, R)-1]$ moiety possesses the helical cavity at the axial sites capable of discriminating the chirality of prochiral substrates through coordination and may serve as a novel type of chiral catalyst. Indeed, the latter possiblility is shown by the asymmetric hydrosilylation of PhCOMe with $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ with the catalyst prepared from $\left[\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]_{2}$ and $(+)-(R, R)-\mathbf{1}$ in situ which gave $(S)-\mathrm{PhCH}(\mathrm{OH}) \mathrm{Me}$ after hydrolysis in 35 and 57% chemical and optical yields, respectively.

Received, 4th January 1995; Com. 5/00075K

Footnotes

\dagger The structures were solved by direct methods for $(+)-(R, R)-1$ and by the Patterson method for the racemate of trans- $\left[\mathrm{RuCl}_{2}(\mathbf{1})\right]$ and refined by fullmatrix least-squares for intensity data collected on a Rigaku AFC-5R diffractometer using graphite-monochromated Mo-K α radiation ($\lambda=$ $0.7107 \AA$). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

Crystal data for $(+)-(R, R)-1: \mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~S}_{4}, M=629.0$, monoclinic, $P 2_{1}, a=$ $11.671(7), b=25.839(8), c=12.687(5) \AA, \beta=110.10(3)^{\circ}, U=3592(5)$ $\AA^{3}, Z=4, D_{\mathrm{c}}=1.163 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=2.76 \mathrm{~cm}^{-1}, F(000)=1344$. final $R\left(R_{\mathrm{w}}\right)=0.0677(0.0534)$ for 3984 reflections $[I>3.0 \sigma(I)]$ and 415 variables. There are two independent molecules in the asymmetric unit, the structures of which are essentially the same. The possibility of the alternative enantiomer, $(-)-(S, S)-\mathbf{1}$ is ruled out by Roger's test, ${ }^{8}$ the final $R\left(R_{\mathrm{w}}\right)$ factors then being $0.0681(0.0537)$.
For trans- $\left[\mathrm{RuCl}_{2}(\mathbf{1})\right]$ (racemate): $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~S}_{4} \mathrm{Cl}_{2} \mathrm{Ru} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me} \cdot \mathrm{EtOH}, M=$ 1031.3, triclinic, $P \overline{1}, a=15.174(4), b=15.977(5), c=13.304(4) \AA, \alpha=$ 114.13(2), $\beta=109.07(2), \gamma=66.51(2)^{\circ}, U=2647(1) \AA^{3}, Z=2, D_{\mathrm{c}}=$ $1.294 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=5.78 \mathrm{~cm}^{-1}, F(000)=1080$, final $R(R \mathrm{w})=$ $0.066(0.057)$ for 2839 reflections $[I>3.0 \sigma(I)]$ and 444 variables.
$\ddagger(+)-(R, R)-1: \mathrm{mp} \mathrm{168-169}{ }^{\circ} \mathrm{C}$; EI-MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 628\left([\mathrm{M}]^{+}\right) .(-)-(S, S)-\mathbf{1}:$ mp 167-168 ${ }^{\circ} \mathrm{C}$; EI-MS (70 eV) m/z 628 ($[\mathrm{M}]^{+}$). ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$) for both enantiomers $0.97(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeC}), 1.92$ (s, 12H, MeAr), $2.65(\mathrm{~d}, J 11.6$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.85\left(\mathrm{~d}, J 11.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.06(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.11$ (d, $J 7.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.18 (dd, $J 7.6,7.6 \mathrm{~Hz}, 4 \mathrm{H}) .(R, S)-1: \mathrm{mp} 282-283{ }^{\circ} \mathrm{C}$; EI-MS (70 eV) m/z $628\left([\mathrm{M}]^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$) $0.77(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeC})$, $1.05(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeC}), 1.91(\mathrm{~s}, 12 \mathrm{H}, \mathrm{MeAr}), 2.52\left(\mathrm{~d}, J 11.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.01$ (d, $\left.J 11.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.09(\mathrm{~d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH})$, 7.18 (dd, $J 7.8,7.8 \mathrm{~Hz}, 4 \mathrm{H})$, trans-[$\left.\operatorname{RuCl}_{2}\{(+)-(R, R)-1\}\right]: \mathrm{mp}>300^{\circ} \mathrm{C}$; FAB-MS (3-nitrobenzyl alcohol) $m / z 802\left([\mathrm{M}]^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right) 1.25$ (s, 12H, MeC), 1.91 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{MeAr}), 2.74$ (d, J $11.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$), 3.45 (d, $\left.J 11.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.19-7.26(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar})$. trans- $\left[\mathrm{RuCl}_{2}\{(R, S)-\mathbf{1}\}\right]: \mathrm{mp}$ $>300^{\circ} \mathrm{C}$; FAB-MS (3-NOBA) m/z 802 ([M] ${ }^{+}$); ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right) 1.04$ (s, 6H, MeC), 1.17 (s, 6H, MeC), 1.98 (s, 12H, MeAr), 2.62 (brd, $J 11.3 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.29\left(\mathrm{~d}, J 11.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.28(\mathrm{~d}, J 7.8 \mathrm{~Hz}, 4 \mathrm{H} \mathrm{ArH}), 7.32$ (dd, J 7.8, $7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), 7.47 (d, J $7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$).

References

1 S. R. Cooper and S. C. Rawle, Struc. Bonding (Berlin), 1990, 72, 1; A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1; T. Yoshida, T. Adachi and T. Ueda, Pure Appl. Chem., 1990, 62, 1127.
2 M. Lemaire, J. Buter, B. K. Vriesema and R. M. Kellogg, J. Chem. Soc.. Chem. Commun., 1984, 309; M. Lemaire, B. K. Vriema and R. M. Kellogg, Tetrahedron Lett., 1985, 26, 3499.
3 E. C. Constable, Prog. Inorg. Chem., 1994, 42, 67; E. C. Constable, Tetrahedron, 1992, 48, 10013 ; R. Krämer, J.-M. Lehn, A. D. Lian and J. Fischer, Angew. Chem., Int. Ed. Engl., 1993, 32, 703; J. K. Judice, S. J. Keipert and D. J. Cram, J. Chem. Soc., Chem. Commun., 1993, 1323; S. W. A. Bligh, N. Choi, E. G. Evagorou, W.-S. Li and M. McPartlin, J. Chem. Soc., Chem. Commun., 1994, 2399; D. E. Fenton, R. W. Matthews, M. McPartlin, B. P. Murphy, I. J. Scowen and P. A. Tasker, J. Chem. Soc., Chem. Commun., 1994, 1391 and references cited therein.
4 T. Yoshida and T. Veda, to be published.
5 J. Buter and R. M. Kellogg, J. Org. Chem., 1981, 46, 4481.
6 Y. Okamoto, M. Kawashima and K. Hatada, J. Chromatogr., 1986, 363, 173.

7 R. Schmid, M. Cereghetti, B. Heiser, P. Schönholzer and H. J. Hansen, Helv. Chim. Acta, 1988, 71, 897.
8 D. Roger, Acta Crystallogr., Sect.A, 1981, 37, 734.
9 T. E. Jones, L. S. W. L. Solol, D. B. Rorabacher and M. D. Glick, J. Chem. Soc., Chem. Commun., 1979, 140.

10 T. Yoshida, T. Adachi, T. Ueda, F. Goto, K. Baba and T. Tanaka, J. Organomet. Chem., 1994, 473, 225.

