
Control of Regioselectivity in the Diels–Alder Reactions of Alkyl-substituted 1,4-Benzoquinones by β -Cyclodextrin and its Derivatives

Wen-Sheng Chung* and Ju-Ying Wang

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC

The Diels–Alder reactions of benzoquinones 1–3 with penta-1,3-diene 4 and isoprene 5 are studied in aqueous cyclodextrin solutions, where highly enhanced *ortho* (6, 8 and 10) and *meta* (13, 15) regioselectivities are achieved.

Quinones are widely employed as dienophiles in Diels-Alder reactions.1 The diverse biological activity of quinones has led to the development of several new synthetic methods for quinones.^{2,3} Much attention has been devoted to investigating the regio- and stereo-chemistry of Diels-Alder reactions by means of Lewis acid catalysis;⁴ however, the acidic nature of the Lewis acid catalysts is not compatible with sensitive dienes or dienophiles prone to polymerization. The possibility of controlling the course of Diels-Alder reactions by the use of aqueous solvents^{5,6} and by added cyclodextrins (CDs)^{6,7} is also of considerable current interest. Although CDs have been known for several years to accelerate Diels-Alder reactions and enhance the endo/exo stereoselectivity,6.7 surprisingly there have been few reports of their use in regio-selectivity control. As part of our continuing interest in using CDs to control diastereoselectivity in molecular reactions,⁸ we report here a study in which aqueous CDs were applied to control the regioselectivity in Diels-Alder reactions of substituted 1,4-benzoquinones 1-3 with penta-1,3-diene 4 and isoprene 5.

The Diels-Alder reaction of methyl-1,4-benzoquinone 1 with 4 in the presence and absence of Lewis acids in an organic solvent has been reported previously by Valenta.4c The reaction of 1 (0.2 mol dm^{-3}) with 4 (0.2–0.35 mol dm^{-3}) in acetone at room temp. leads sluggishly to a 64:36 mixture of ortho and meta adducts, 6 and 7 (Scheme 1), in 52% yield; however, 7 was found to be the predominant product (6:7 = 31:69) in $BF_3 \cdot OEt_2$ catalysed reactions (Table 1, entries 1, 5). The regioselectivity of 6:7 was found to increase from 66:34 in water to 83:17 in aqueous CD solution. Products were formed less selectively with modified β -CDs, which may be due to unfavoured geometry in inclusion complexes (Table 1, entries 3-4).8 Table 1 summarizes some of our results in water and in β -CDs, where the plateau value is reported; *i.e.* the relative yield of ortho or meta products increased gradually with $[\beta-CDs]$ until a constant value was reached (Fig. 1). Product yields were also improved in the presence of β -CDs compared with those in water alone.

Similar results were observed for the addition of 2,6-dimethylbenzoquinone 2 and 2-methoxy-benzoquinone 3 with 4 (Table 1, entries 6–12). When β -CD solution was used, excellent *ortho* selectivities (8 and 10) with very good yields were achieved. Notice that this *ortho* selectivity is reversed from that of the Lewis acid-catalysed reaction, where *meta* was the only product formed (Table 1, entry 8 vs. 9). β -CDs also have a profound effect on the rate of the Diels–Alder reactions of 2 and 3; for example, less than 21% of adduct 10 was obtained in water compared to an 80% yield in β -CD for the same reaction time (Table 1, entries 10–12).

The addition of isoprene 5 is usually regio non-selective in Diels–Alder reactions. For example, Houk^{9*a*} and Chiba^{9*b*} independently reported that the Diels–Alder reaction of iso-

Table 1 Diels-Alder reactions of isoprene 4 and penta-1,3-diene 5 with quinones 1-3 in different media

Entry	Diene	Dienophile	Conditions ^a	t/h ^b	Product ratio ^c	Yield(%) ^c	Ref.
1	4	1	Acetone	48	6:7 = 64:36	52	4 <i>c</i>
2	4	1	Water	6	66:34	73	
3	4	1	β-CD–Water	6	83:17	82	
4	4	1	7-β-CD–Water	6	70:30	70	
5	4	1	BF ₃ ·OEt ₂ –Toluene	_	31:69	>75	4c
6	4	2	Benzene	47	8:9 = 90:10	64 ^d	4d
7	4	2	Water	9 d	> 99 : 1	25^{d}	
8	4	2	β-CD–Water	40	> 99 : 1	74^{d}	
9	4	2	BF3·OEt2-CH2Cl2	5	0:100	90 ^d	4c, 4d
10	4	3	Benzene	48	10:11 = 100:0	77d	4e, 10
11	4	3	Water	18	> 99 : 1	21 ^d	
12	4	3	β-CD–Water	18	> 99 : 1	80^d	
13	5	1	Acetone	11 d	12:13 = 53:47	23	
14	5	1	Water	24	56:44	30	
15	5	1	β-CD-Water	12	14:86	86	
16	5	1	7-β-CD–Water	12	45:55	88	
17	5	1	BF ₃ ·OEt ₂ CH ₂ Cl ₂	4.5	69:31	96	
18	5	2	Benzene	2.5 d	14:15 = 55:45	6	4d
19	5	2	Water	8 d	65:35	4^e	
20	5	2	β-CD–Water	48	12:88	76^{e}	
21	5	2	7-β-CD–Water	48	65:35	21^e	
22	5	2	BF ₃ ·OEt ₂ CH ₂ Cl ₂	7	16:84	93e	

^{*a*} Reactions were run at room temp. except for those of BF₃·OEt₂ at 0 °C and benzene at 110–115 °C. 7-β-CD is heptakis-(6-*O*-hydroxypropyl)-β-CD, [β-CDs] = 0.14–0.28 mol dm⁻³. ^{*b*} Reaction time in hours unless stated otherwise. ^{*c*} Satisfactory spectral data and elemental analysis were obtained. Yields and ratios were determined by GC analysis (*ca.* ±2%) unless otherwise specified. ^{*d*} Isolated yields. ^{*e*} Yields and ratios were determined by ¹H NMR.

prene with 2,5-dimethyl benzoquinone shows a 1:1 ratio of *para* and *meta* adducts. Addition of isoprene to both 1 and 2 in the presence of 1–2 equiv. of β -CD resulted in a large increase in the amount of *meta* adducts (Scheme 2; Table 1, entries 13–15, 18–20). Note that the *meta*-selectivity in 1 with CDs is opposite to that with Lewis acid-catalysis¹⁰ (Table 1, entry 15 vs. 17); also, it would be difficult to achieve such a synthesis by other methods.† In the reaction of 2 with 5, both β -CD and BF₃·OEt₂ reversed the normal *para* selectivity with excellent yield (Table 1, entries 19–22). Interestingly, such processes in CDs are often carried out in suspensions, and in these cases, the reaction proceeds *via* small amounts of dissolved reactants.

The observed preference for the *ortho* (reactions with penta-1,3-diene 4) or *meta* (reactions with isoprene 5) regioselectivity in aqueous β -CDs may be interpreted in terms of a 'cavity control' in the transition state for adduct formation. The

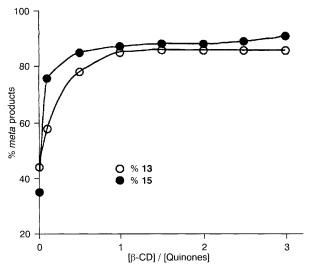


Fig. 1 % meta-Adducts (13 and 15) from the Diels–Alder reactions of isoprene with toluquinone 1 and 2,6-dimethyl-1,4-benzoquinone 2 as a function of the ratio [β -CD]: [Quinones].

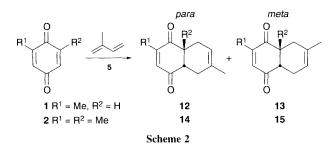


Table 2 $\,^1\text{H}$ NMR chemical shifts $^{\alpha}$ for protons of $\beta\text{-CD}$ and its complex with 13

	δ							
	H-1	H-2	H-3	H-4	Н-5	H-6		
β -CD β-CD + 13 Δδ/Hz	1526.8 1525.1 -1.7	1095.1		1074.3 1075.3 +1.0	1154.7 1130.3 -24.4	1163.2 1157.4 -5.8		

^{*a*} Measured in a Varian Unity 300 MHz NMR at 24 ± 0.5 °C in D₂O with Me₄Si as an external standard.

occurrence of deep binding of the reaction products, naphthohydroquinones, by CDs is supported by a report of Tabushi *et al.*¹² based on their study of the electronic and fluorescence spectra of complexes of CDs with substituted naphthohydroquinones or benzoquinones. Further support concerning the inclusion complexes comes from a ¹H NMR titration study, where the upfield shifts of H-3 and H-5 of β -CD in D₂O can be attributed to the diamagnetic anisotropic shielding effect of the benzoquinone ring of adduct **13** (Table 2). The results for modified β -CDs also support the notion that inclusion complexes are needed, otherwise no reversal in selectivity can be achieved (Table 1, entries 21 *vs.* 19).

We thank the National Science Council of the Republic of China for financial support.

Received, 20th February 1995; Com. 5/01015B

Footnote

⁺ Adducts **6**,¹² 7^{4d} and **10**¹⁰ have been reported in the literature, our samples correspond in all respects with the reported properties. Compound **13** has been postulated but was not isolated before. Pure **13** (mp 76–77 °C) can be obtained by recrystallization from light petroleum (bp 35–60 °C) (Table 1, entry 15) ¹H NMR (300 MHz, CDCl₃)0 δ 1.66 (3 H, br s), 1.99 (3H, d, J 1.5 Hz), 1.99–2.22 (2 H, m); 2.32–2.47 (2 H, m), 3.11 (1 H, td, J 8.8, 5.9 Hz), 3.23 (1 H, td, J 8.8, 5.9 Hz), 5.33–5.40 (1 H, m) and 6.51 (1 H, m). ¹³C NMR (75.4 MHz, CDCl₃) δ 16.31, 23.36, 24.79, 28.80, 46.25, 46.77, 118.40, 131.64, 136.08, 148.96, 200.40 and 200.53; IR (KBr) v/cm⁻¹ 2894, 2914, 1670, 1637 and 1621.

References

- R. H. Thomson, *Naturally Occurring Quinones*, Chapman and Hall, New York, 1987.
- 2 For introduction of these synthetic methods see: G. A. Kraus, J. Li, M. S. Gordon and J. J. Jensen, J. Am. Chem. Soc., 1993, **115**, 5859.
- 3 S. Danishefsky, P. Schuda and K. Kato, J. Org. Chem., 1976, 41, 1081; J. G. Bauman, R. C. Hawley and H. Rapoport, J. Org. Chem., 1985, 50, 1569.
- 4 (a) M. A. Forman and W. P. Dailey, J. Am. Chem. Soc., 1991, 113, 2761;
 (b) P. A. Grieco, J. J. Nunes and M. D. Gaul, J. Am. Chem. Soc., 1990, 112, 4595; (c) Z. Stojanac, R. A. Dickinson, N. Stojanac, R. J. Woznow and Z. Valenta, Can. J. Chem., 1975, 53, 616; (d) J. B. Hendrickson and V. Singh, J. Chem. Soc., Chem. Commun., 1983, 837; (e) J. S. Tou and W. Reusch, J. Org. Chem., 1980, 45, 5012.
- 5 P. A. Grieco, K. Yoshida and P. Garner, J. Org. Chem., 1983, 48, 3139; A. Lubineau, J. Augé and Y. Queneau, Synthesis, 1994, 741; U. Pindur, G. Lutz and C. Otto, Chem. Rev., 1993, 93, 741 and references cited therein.
- 6 R. Breslow, Acc. Chem. Res., 1991, 24, 159; R. Breslow and T. Guo, J. Am. Chem. Soc., 1988, 110, 5613.
- 7 H.-J. Schneider and N. K. Sangwan, J. Chem. Soc., Chem. Commun., 1986, 1787; H.-J. Schneider and N. K. Sangwan, Angew. Chem., Int. Ed. Engl., 1987, 26, 896.
- 8 W.-S. Chung, N. J. Turro, J. Silver and W. J. le Noble, J. Am. Chem. Soc., 1990, 112, 1202 and earlier refs. cited therein; W.-S. Chung, N.-J. Wang, Y.-D. Liu, Y.-J. Leu and M. Y. Chiang, J. Chem. Soc., Perkin Trans. 2, 1995, 307.
- 9 (a) I.-M. T. Larsoon, M. D. Rozeboom and K. N. Houk, *Tetrahedron Lett.*, 1981, **22**, 2043; (b) K. Chiba and M. Tada, *J. Chem. Soc., Chem. Commun.*, 1994, 2485.
- 10 F. Bohlmann, W. Mathar and H. Schwarz, Chem. Ber., 1977, 110, 2028.
- 11 I. Tabushi, Y. Kuroda, K. Fujita and H. Kawakubo, *Tetrahedron Lett.*, 1978, **19**, 2083.
- 12 M. Tishler, L. F. Fiser and N. L. Wendler, J. Am. Chem. Soc., 1940, 62, 2866.