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The enal 15 was synthesized in enantiomerically pure form 
starting from (S)-3-benzyloxy-2-methylpropanol 3 via highly 
regio- and stereo-selective methylation of the +epoxy 
acrylate 5 with trimethylaluminium in the presence of water, 
developing an enantiospecific route to tirandamycin B. 

Tirandamycin B 1 was isolated together with tirandamycin A 2 
from a culture broth of Streptomyces JlaveoZus.l Both are 
representative members of the dienoyl tetramic acid family of 
antibiotics and possess potent antimicrobial activity as well as 
inhibitory activity against bacterial DNA-directed RNA poly- 
merase.2 In 1991, DeShong and coworkers succeeded in the first 
synthesis of tirandamycin B in racemic f01-m.3 This is the only 
complete synthesis of this antibiotic reported so far although 
there have been several reports concerning the synthesis of 
racemic and optically active tirandamycin A.4-6 Recently, we 
have developed a novel regio- and stereo-selective methylation 
reaction of y,&epoxy acrylates with trimethylaluminium in the 
presence of water,7 which provides a useful route to poly- 
propionate chains.8 We report here a stereocontrolled enantio- 
specific synthesis of enal 15, DeShong's key intermediate for 
the synthesis of tirandamycin B, from (S)-3-benzyloxy-2- 
methylpropanol3 employing this methodology for the assembly 
of its polypropionate chain structure. 

The known epoxy alcohol 4,9 readily available from (S) -  
3-benzyloxy-2-methylpropanol 3, was subjected to Swern 
oxidation followed by Wittig reaction in the same flasklo to give 
the y,6- epoxy acrylate 5,t [a]D22 +7.3 (c 0.97, CHCl3), in 96% 
yield. Upon treatment of 5 with trimethylaluminium in the 
presence of water,7 the methylation reaction took place with 
complete regio- and stereo-selectivity to give the alcohol 6, 
[a]D22 -6.4 (c 0.50, CHC13), as the sole product in 88% yield. 
No isomeric products were produced. After protection of the 
hydroxy group of 6 as its triethylsilyl ether, selective debenzyla- 
tion was effected cleanly by hydrogenolysis using Lindlar 
catalyst in diethyl ether$ to give the alcohol 7, -18.9 
(c 1.69, CHC13), in 93% yield. Swern oxidation of 7 afforded the 
corresponding aldehyde which was directly submitted to 
condensation with the furyllithium generated from 8 by the 
action of tert-butyllithium,3 giving a 3:2 epimeric mixture of 
the furfuryl alcohols 9a, [aID22 +19.2 (c 0.86, CHC13), and 9b, 
[a]D22 -7.1 (c 1.81, CHC13), in 70% yield. In this particular 

1 R = O H  
2 R = H  

case, elongation of the reaction period and elevation of the 
reaction temperature from -78 "C to room temperature resulted 
in cyclisation of the a-alcohol 9b to the tetrahydropyran 10, 
making isolation of the unchanged P-alcohol 9a easy.$ 
Treatment of 9a with MCPBA brought about smooth oxidative 
cyclisation5-6 to give the pyranone 11 as an inseparable epimeric 
mixture in 85% yield. 

The crucial assembly of the 2,9-dioxabicyclo[3.3. llnonane 
framework followed DeShong's protocol.3 Thus, exposure of 11 
to a mixture of hydrofluoric acid and fluorosilicic acid in 
acetonitrile allowed simultaneous selective desilylation of the 
triethylsilyl group and intramolecular ketalisation to provide the 
bicyclic enone 12, [a]D22 +105.5 (c 1.45, CHCl3), in 74% yield. 
Reduction of 12 with sodium borohydride in the presence of 
cerium(m) chloridell gave the allylic alcohol 13, [a]D22 -2.5 
(c 0.4, CHC13), and oxidation of the latter with MCPBA 
afforded the epoxide 14, [a]D22 - 14.7 (c 1.65, CHC13), in 62% 
yield. Reduction of 14 with DIBAL-H followed by oxidation 
with pyridinium dichromate furnished the enal 15, [ a ] ~ ~ ~  -4.0 
(c 0.53, CHC13), in 82% yield. The enal 15 thus obtained 
exhibited identical spectral properties (IH and *3C NMR, IR) to 
those of the racemic enal.3 

Since the racemic enal has already been converted to 
(f)-tirandamycin B in good overall yield,3 the present work 
enables us to synthesize natural tirandamycin B as well as its 
antipode starting from either (R)- or (S)-3-benzyloxy-2- 
methy lpropanol. 

We thank Professor Philip DeShong (University of Mary- 
land, USA) for providing us with spectral data of the racemic 
enal. 

Footnotes 
t All new compounds exhibited satisfactory spectra (lH and I3C NMR, IR) 
and HRMS analytical data. 
$ After filtration of the reaction mixture through Celite, the filtrate was 
washed with saturated NaHC03. Without this operation, the triethylsilyl 
ether was partly cleaved during evaporation. 
8 When the reaction mixture was allowed to stand at room temperature for 
12 h, 9a and 10 were produced in 42 and 35% yield, respectively. 
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Scheme 1 Reagents and conditions: i, (COClh, Me2S0, Et3N, CH2C12, -60 to 25 "C, then Ph3P=C(Me)C02Et; ii, Me3A1 in hexane (2 mol dm3,lO equiv.), 
H20 (6 equiv.), C1CH2CH2Cl, -30 "C; iii, Et3SiC1, imidazole, DMAP (cat.), CH2Clz; iv, HZ, 10% Pd-BaS04, Et20; v, (COC1)2, Me2S0, Et3N, CH2C12, -60 
to 25 "C; vi, 8 (3 equiv.), ButLi in hexane (1.8 mol dm-3,3 equiv.), TMEDA (3 equiv.), Et20, 0 OC, then the aldehyde, -78 "C; vii, MCPBA, CH2C12, 0 "C; 
viii, 48% HF (1.5 equiv.), 25% H2SiF6 (1.5 equiv.), MeCN (5 X mol dm-3); ix, NaBH4, CeCl3, MeOH; x, MCPBA, NaH2P04.2H20, 1% H20-CH2Cl2; 
xi, DIBAL-H, CH2C12, -78 "C; xii, PDC, CH2C12 
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