Serendipitous synthesis of a novel cobalt(III) porphyrin phosphoryl complex

Andy K.-S. Tse, Ru-ji Wang, Thomas C. W. Mak and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

A novel complex [bis(dimethylamino)phosphoryl](5,10,15, 20-tetraphenylporphyrinato)cobalt(III) 1 is synthesized serendipitously by the reaction of $[Co^{III}(tpp)Br]$ with Me₃SiLi (MeLi–Si₂Me₆–HMPA) at -78 °C in thf and its structure is characterized by a single-crystal X-ray study.

Transition-metal silyls are important intermediates in hydrosilylation reactions¹ and silane polymerization.² In order to gain a better understanding of their roles in these catalytic processes, we have initiated measurement of bond dissociation energies of metal–silyl complexes.³ In the course of the attempted preparation of cobalt porphyrin silyls, we have discovered a serendipitous synthesis of a novel cobalt(III) porphyrin phosphoryl complex.

Our first attempt to prepare a silvl complex, by treating the strongly nucleophilic $[Co^{I}(tpp)]^{-}$ anion with Me₃SiCl in a manner similar to the synthesis of cobalt porphyrin alkyl compounds⁴ did not prove to be successful. Only $[Co^{II}(tpp)]$ was isolated (both in thf and toluene).⁴ On the other hand, when $[Co^{III}(tpp)Br]$ was silvlated with Me₃SiLi (MeLi–Si₂Me₆–HMPA) (HMPA = hexamethylphosphoramide) at -78 °C in thf, adapting the Goff procedure,⁵ the reduction product $[Co^{II}(tpp)]$ (28%) and a new product 1 (62%)[†] were isolated. Compound 1 showed sharp proton resonances supporting the formation of a diamagnetic cobalt(III) compound. Two resonances at δ –0.30 and –0.27 appeared, each of intensity 6 H suggesting two non-equivalent methyl groups which however appeared as a singlet at δ 35.02 in the ¹³C NMR spectrum. It is unlikely, therefore that the Me₃Si group had been introduced.

The structure of 1 was revealed by a single-crystal X-ray diffraction analysis [eqn. (1), Fig. 1] and was shown to

 $Me_{3}Si-SiMe_{3} + MeLi \xrightarrow{[Co(tpp)Br]} [Co(tpp){PO(NMe_{2})_{2}}] (1)$ $HMPA-THF, -78 ^{\circ}C \qquad 1 62\%$

be [bis(dimethylamino)phosphoryl)](5,10,15,20-tetraphenylporphyrinato)cobalt(III) [Co^{III}(tpp){PO(NMe₂)₂]].‡ The coordination sphere of the cobalt atom shows square-pyramidal geometry with four porphyrinato nitrogen atoms occupying the

Fig. 1 ORTEP drawing of 1 drawn at 35% probability

basal sites and the phosphorus atom of bis(dimethylamino)phosphoryl group residing at the axial site. The Co-N bond length is 1.972 Å in accord with five-coordinate organocobalt(III) porphyrins.⁶ The Co-P bond length is 2.265 Å which lies in the range of the relatively few reported Co-P bond lengths7 and is longer by 0.021-0.102 Å compared with compounds containing Co-P o bonds, such as in a cobaltphosphinediyl complex^{8a} (Co-P 2.163-2.210 Å) and a cobaltphosphido complex^{8b} (Co-P 2.244 Å). This slight lengthening may be due to the bonding of the phosphoryl ligand of 1 to a bulky cobalt-porphyrin moiety. The porphyrin ring is close to planar with a mean deviation of 0.12 Å from the basal plane for four meso carbons whereas the nitrogen atoms deviate alternatively above and below it by 0.10 Å. The IR spectrum showed a sharp P=O stretch at 1352 cm⁻¹ (compared with $v_{P=O}$ 1295.6 cm⁻¹ in HMPA).⁹ In the ³¹P NMR spectrum, a broad singlet appeared at δ 6.95 confirming the presence of a phosphorus atom and the line broadening is probably due to the quadrupolar effect of cobalt ($\omega_{\pm} = 1096 \text{ Hz}$).¹⁰

In order to confirm the successful generation of Me₃SiLi under the employed reaction conditions, the well precedented reaction of Me₃SiLi with cyclohex-2-en-1-one, followed by trapping with MeI was repeated.¹¹ The expected product, *trans*-3-trimethylsilyl-2-methylcyclohexanone, was obtained in 96% yield, this experiment confirming that Me₃SiLi was successfully generated.

Complex 1 is likely to be obtained from the reaction of $[Co^{III}(tpp)Br]$ and $(Me_2N)_2P(O)^- 2$, generated from the reaction of organolithiums with HMPA.¹² Anion 2¹² was independently generated from MeLi–HMPA and successfully trapped with $[Co^{III}(tpp)Br]$ to give 1 in 55% yield (Scheme 1) and its spectral characteristics were identical with the complex generated from Me₃SiLi–HMPA– $[Co^{III}Br(tpp)]$. It is of note that the reaction of $[Co^{I}(tpp)]^-$ with $(Me_2N)_2P(O)Cl$ did not produce complex 1 but only gave $[Co^{II}(tpp)]$ in 43% yield, demonstrating the unique synthesis of the cobalt(III) porphyrin phosphoryl complex.

Since organocobalt complexes have been routinely prepared from $[Co^{III}(tpp)Br]$,¹³ this serendipitious synthesis of complex 1 may be accounted for by the reaction of Me₃SiLi with HMPA to give $(Me_2N)_2P(O)^- 2$. Even though Me₃SiLi reacts with an organic electrophile, cyclohex-2-en-1-one, its reaction towards a bulky organometallic electrophile, $[Co^{III}(tpp)Br]$, may be slower and instead Me₃SiLi preferably abstracted a proton from HMPA to give a more stabilized phosphoryl anion 2, and then complex 1 after reaction with $[Co^{III}(tpp)Br]$. This observation indicated that the use of Me₃SiLi–HMPA as a silylating agent for a bulky organometallic electrophile may not always be appropriate.

Scheme 1 Reagents: i, R=Me or Me₃Si, -CH₂=N-Me; ii, [Co(tpp)Br]

We thank the Research Grants Council of Hong Kong (CUHK 300/94 P) for financial support and the purchase of NMR spectrometers.

Footnotes

† [Bis(dimethylamino)phosphoryl](5,10,15,20-tetraphenylporphyrinato)cobalt(III): C₄₈H₄₀CoN₆OP: 62% yield. *Selected characterization data*: ¹H NMR (CDCl₃, 250 MHz) δ -0.30 (s, 6 H), -0.27 (s, 6 H), 7.72 (s, 12 H), 8.10 (br s, 8 H), 8.85 (s, 8 H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 35.02, 122.09, 126.84, 127.71, 127.93, 132.71, 132.25, 141.77, 146.65; ³¹P NMR (CDCl₃, 202 MHz) 6.95 ($\omega_{\pm} = 1096$ Hz); UV-VIS (CH₂Cl₂), $\lambda_{\text{rmax}}/\text{nm}$ (log ε/dm³ mol⁻¹ cm⁻¹) 408 (5.22), 530 (4.17); IR (thin film) 1352 cm⁻¹; FABMS, *m*/z 806 (M⁺); Anal. Calc. for C₄₈H₄₀CoN₆OP-CH₂Cl₂: C, 66.05; H, 4.76; N, 9.44; P, 3.84. Found: C, 66.48; H, 4.87; N, 9.23; P, 3.35%. ‡ *Crystal data* for 1-Ch₂Cl₂: grown from dichloromethane–hexane: C₄₈H₄₀CoN₆OP-CH₂Cl₂ crystallizes in the space group *P*1 (no. 2) with *a* =

11.179(2), b = 13.034(3), c = 15.877(3) Å, $\alpha = 110.44(3)$ $\beta = 95.43(3)$, $\gamma = 94.79(3)$, U = 2141.1(7) Å³, Z = 2, $D_c = 1.383$ g cm⁻³. Refinement converged to R = 0.074, R' = 0.072.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

 N. Chatani, S. Murai and N. Sonoda, J. Am. Chem. Soc., 1983, 105, 1370; N. Chatani, H. Furukawa, T. Kato, S. Murai and N. Sonoda, J. Am. Chem. Soc., 1984, 106, 430; M. Brookhart and B. E. Grant, J. Am. Chem. Soc., 1993, 115, 2151.

- 2 T. D. Tilley, in *Chemistry of Organic Silicon Compounds*, ed. S. Patai and Z. Rappoport, Wiley, New York, 1989, vol. 2; T. D. Tilley, *Acc. Chem. Res.*, 1993, **26**, 22.
- 3 J. Halpern, Polyhedron, 1988, 7, 1483; B. D. Martin and R. G. Finke, J. Am. Chem. Soc., 1992, 114, 585; Q. Jiang, D. C. Pestana, P. J. Carroll and D. H. Berry, Organometallics, 1994, 13, 3679.
- 4 H. W. Whitelock, Jr. and B.-K. Bower, *Tetrahedron Lett.*, 1965, 52, 4827; H. Ogoshi, E.-I. Watanabe, N. Koketsu and Z.-I. Yoshida, *Bull. Chem. Soc. Jpn.*, 1976, 49, 2529; D. Dolphin, D. J. Halko and E. Johnson, *Inorg. Chem.*, 1981, 20, 4348.
- 5 Y. O. Kim and H. M. Goff, J. Am. Chem. Soc., 1988, 110, 8706.
- 6 L. D. Sparks, C. J. Meforth, M.-S. Park, J. R. Chamberlain, M. R. Ondrias, M. O. Sengo, K. M. Smith and J. A. Shelnutt, J. Am. Chem. Soc., 1993, 115, 581; J. S. Summers, J. L. Petersen and A. M. Stolzenberg, J. Am. Chem. Soc., 1994, 116, 7189.
- 7 G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Waston and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1; D. Fenske, R. Basoglu, J. Hachgenei and E. Rogel, Angew. Chem., Int. Ed. Engl., 1984, 23, 160; G. L. Simon and L. F. Dahl, J. Am. Chem. Soc., 1973, 75, 2175.
- 8 (a) J. C. Burt, R. Boese and G. Schmid, J. Chem. Soc., Dalton Trans., 1978, 1387; (b) R. C. Ryan and L. F. Dahl, J. Am. Chem. Soc., 1973, 97, 6904.
- 9 C. J. Pouchert, in *The Aldrich Library of FT-IR Spectra*, Aldrich, 1985, vol. 1, p. 921.
- 10 K. R. Dixon, in *Multinuclear NMR*, ed. I. M. Joan, Plenum, New York, 1987, p. 369; Alamac 1995, Bruker, Germany, 1985.
- 11 W. C. Still, J. Org. Chem., 1976, 41, 3063.
- 12 E. M. Kaiser, J. D. Petty and L. E. Solter, J. Organomet. Chem., 1973, 61, C1; A. G. Abatjoglous and E. L. Eliel, J. Org. Chem., 1974, 39, 3042; P. Magnus and G. Roy, Synthesis, 1980, 7, 575.
- 13 H. Sugimoto, M. Nagano, Z.-I. Yoshida and H. Ogoshi, Chem. Lett., 1980, 521.

Received, 2nd September 1995; Com. 5/06219E