Photoinduced charge-separation using 10-methylacridinium ion loaded in
zeolite Y as a photocatalyst with negligible back electron transfer across the

zeolite—solution interface
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Photoinduced electron transfer from Fe?+ loaded in zeolite Y
to the singlet excited state of 10-methylacridinium ion in the
zeolite occurs to give the acridinyl radical which reduces
7,7,8,8-tetracyanoquinodimethane in acetonitrile solution to
yield the radical anion; the back electron transfer from the
radical anion to Fe3+ across the zeolite-solution interface is
shown to be negligibly slow.

Considerable efforts have so far been devoted to develop
photocatalytic systems in which a back electron transfer
following the initial photoinduced electron transfer can be
retarded to achieve long-lived charge separation.!=7 The most
remarkable result has recently been reported by Dutta et al.8-9 by
encapsulation of Ru(bpy);2* in the supercage of zeolite Y to
retard the back electron transfer across the zeolite-solution
interface. In fact, the radical anion of propylviologen sulfonate
(PVS) formed by photoinduced electron transfer from
Ru(bpy)s2*+ in the zeolite to PVS in solution persisted for hours.?
However, the absence of back electron transfer across the
zeolite—solution interface has not been established experimen-
tally. Moreover, it should be resolved as to why the back
electron transfer between stable ground state molecules, which
is thermodynamically a much more favoured process than the
forward electron transfer, does not occur appreciably within
hours although the forward electron transfer from the short-
lived excited state of Ru(bpy);2* to PVS occurs across the
zeolite—solution interface within microseconds.

We report herein a photocatalytic system that achieves
complete charge separation between Fe3+ in zeolite Y and an
acceptor radical anion in solution by using 10-methylacridinium
ion (AcrH+) loaded in the zeolite as a photocatalyst. The
absence of the back electron transfer across the zeolite—solution
interface has been confirmed experimentally.

Both Fe2+ (1.9 X 10-5-8.2 X 10-5 mol g—!, 0.38-1.3
molecules per 10 supercages) and AcrH* (1.4 X 104 mol g—1,
2.7 molecules per 10 supercages) were loaded into Na-Y zeolite
by ion exchange with Fe(ClO,), and (AcrH)ClO, in acetonitrile
(MeCN).T The visible absorption band of AcrH+* incorporated
in the zeolite was observed at Aj.x = 362 nm, which is
significantly red-shifted compared with that in an MeCN
solution (Apax = 358 nm).10 Photolysis of the ion-exchanged
zeolite (20 mg) suspended in an MeCN solution of TCNQ (1.0
X 10—3 mol dm—3) under irradiation of a mercury lamp through
a Pyrex filter at 298 K leads to the appearance of TCNQ "~ (Amax
842 nm, €max 4.33 X 104 dm3 mol—! cm—1)!! in solution. The
absorption spectra of the suspended solution stirred with a
magnetic stirrer were monitored using an integrating sphere
attachment. The concentration of TCNQ-— after photolysis for
21 h was determined as 5.5 X 10— mol dm—3, which
corresponds to 13% of the initial amount of Fe2+ loaded in the
zeolite. The initial rate of formation of TCNQ:'— under
irradiation of the mercury lamp increases with an increase in the
amount of Fe?* loaded in the zeolite, [Fe2*], to reach a limiting
value at higher concentrations as shown in Fig. 1. A standard
actinometer (potassium ferrioxalate)'?2 was used for the quan-
tum yield (®) determination. The @ value for the formation of

TCNQ-— in the photolysis of the Fe2*—AcrH*—zeolite sample
(10 mg, Fe2+ = 8.2 X 10~3 mol g—!) suspended in MeCN
containing TCNQ (1.0 X 10—% mol dm~—3) over a period of 40
min was estimated as 5.1 X 10—4, which is compatible with the
® value reported for the Ru(bpy);2*—zeolite system.?

Irradiation of the absorption band of AcrH* (362 nm) of the
Fe2+—AcrH+—zeolite suspended in MeCN causes fluorescence
as shown in Fig 2. The fluorescence intensity (/) decreases with
an increase in [Fe2+]. The fluorescence decay obeyed the first-
order kinetics. The fluorescence lifetime () also decreases with
an increase in [Fe2+]. From the Stern—Volmer plot of /o// and to/
T vs. [Fe2+] are obtained the quenching constant K, as 2.5 X 104
g mol—1.

The formation of Fe3+ inside the zeolite accompanied by the
formation of TCNQ-~ in solution was confirmed by the EPR
spectra. The EPR spectra of the Fe?*—AcrH+-zeolite sample
after the photolysis for 20 h showed a very broad signal centred
around g = 2.0 with a linewidth of ca. 1600 G together with a
sharp signal at g = 4.3. The g values and linewidths of the EPR
spectra agree with those reported for Fe3+ exchanged zeolites.!3
A very sharp signal superimposed on the broad signal at g = 2.0
was also observed at g = 2.004 due to TCNQ:~ which remained
on the surface of the zeolite. Thus, the actual electron source to
reduce TCNQ to TCNQ-— may be Fe2+ loaded in the zeolite,
which is oxidized to Fe3*+ accompanied by the formation of
TCNQ—.

In an MeCN solution, electron transfer from TCNQ:-— to Fe3+
occurs immediately upon mixing Fe(ClQO,); and a sodium salt of
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Fig. 1 Dependence of the initial rate of formation of TCNQ'~ on the amount
of Fe2+ loaded in the zeolite, [Fe2+], for the photolysis of the Fe2+—AcrH+—
zeolite (20 mg) suspended in an MeCN solution of TCNQ (1.0 X 10—3
mol dm—3)
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TCNQ-— which was prepared independently, as expected from
the low oxidation potential of TCNQ-— (0.19 V vs. SCE).!4 In
order to examine the rate of back electron transfer from
TCNQ-— in solution to Fe3+ in the zeolite across the zeolite—
solution interface, we prepared the Fe3+ exchanged zeolite Y.
The rates of back electron transfer from TCNQ:~ in solution to
Fe3+ in the zeolite were determined from a decrease in the
absorption band of TCNQ-~ (Aax 842 nm, €., 4.33 X 104
dm3 mol—! cm—1).11 The initial maximum rate of electron
transfer from TCNQ'— (1.5 X 10—5 mol dm—3) to Fe3+ (7.5 X
10—% mol g—!) in the zeolite (20 mg) was only 1.5 X 10—!0
dm—3 mol s—!, which is orders of magnitude smaller than the
rate of formation of TCNQ-— in Fig. 1. When the amount of
Fe3+ loaded in the zeolite was increased to 1.5 X 10~4 mol g—!,
the initial decay rate of TCNQ-— was also increased to 2.1 X
10—8 dm—3 mol s—!, which is still smaller than the initial rate of
formation of TCNQ-~ in the photolysis in Fig. 1. Thus, it has
been confirmed that the back electron transfer from TCNQ-— in
solution to Fe3*+ in the zeolite across the zeolite—solution
interface is negligible over a timescale of hours.

The photocatalytic mechanism for the present charge separa-
tion system is shown in Scheme 1.

Upon irradiation, photoinduced electron transfer from Fe?* to
the singlet excited state of AcrH+* occurs inside the zeolite to
yield Fe3* and AcrH-. The free energy change of electron
transfer from AcrH- (E%, = —0.43 V vs. SCE)!5 to TCNQ
(EVeq = 0.19 V)14 is largely negative. Thus, electron transfer
(ke) from AcrH- in the zeolite to TCNQ in solution may occur
in competition with the back electron transfer (k) from AcrH-
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Fig. 2 Fluorescence spectra of the Fe2*—AcrH+*—zeolite suspended in MeCN
at 298 K; [Fe2+]/mol g—! = (a) 1.9 X 103, (b) 3.4 X 10—5,(c) 6.4 X 10-5,
(d) 9.4 X 10-5; [AcrH*] /mol g—! = 1.4 X 10—*
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to Fe3+ in the zeolite. Once TCNQ-~ is formed in solution, the
radical anion may be electrostatically repelled by the negatively
charged surface of the zeolite, resulting in essentially no back
electron transfer across the zeolite—solution interface.® By
applying the steady-state approximation to the reactive species
IAcrH** and [AcrH-Fe3+] in Scheme 1, the dependence of the
rate of formation of TCNQ-'~ (R) on [Fe2+] can be derived as
given by eqn. (1), where I, is the light intensity absorbed by
AcrH+, K is the quenching constant

R = {kel TCNQIo/(kp + ket[TCNQJ)} {1Kq[Fe?*]/
(1 + Kg[FeD} (1)

of the singlet excited state of AcrH* by Fe2+ in the zeolite, and
[TCNQJI, is the concentration of TCNQ adsorbed on the zeolite.
From eqn. (1) a linear correlation between R—! and [Fe2+]—1 is
obtained. In fact, a linear correlation is observed in a plot of R—!
vs. [Fe?*] using the data in Fig. 1. From the intercept and the
slope a K value of 2.2 X 10* mol—! g was obtained, in accord
with the value (2.5 X 104 mol—! g) obtained independently from
the fluorescence quenching of AcrH* by Fe2* in the zeolite.
Such an agreement indicates the validity of Scheme 1.
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Footnote

T The total amount of Fe2+ in Fe2+—~AcrH+*—zeolite is taken as the sum of the
amount of Fe2* contained originally (1.9 X 10—5 mol g—!) and that loaded
by the ion exchange.
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