Photoinduced charge-separation using 10-methylacridinium ion loaded in zeolite Y as a photocatalyst with negligible back electron transfer across the zeolite-solution interface

Shunichi Fukuzumi," Tsutomu Urano and Tomoyoshi Suenobu

Department of Applied Chemistry. Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Photoinduced electron transfer from Fe2+ loaded in zeolite Y to the singlet excited state of 10-methylacridinium ion in the zeolite occurs to give the acridinyl radical which reduces 7,7,8,8- tet racy anoquinodimethane in acetonitrile solution to yield the radical anion; the back electron transfer from the radical anion to Fe3+ across the zeolite-solution interface is shown to be negligibly slow.

Considerable efforts have so far been devoted to develop photocatalytic systems in which a back electron transfer following the initial photoinduced electron transfer can be retarded to achieve long-lived charge separation.¹⁻⁷ The most remarkable result has recently been reported by Dutta *et al.839* by encapsulation of $Ru(bpy)_{3}^{2+}$ in the supercage of zeolite Y to retard the back electron transfer across the zeolite-solution interface. In fact, the radical anion of propylviologen sulfonate (PVS) formed by photoinduced electron transfer from $Ru(bpy)_{3}^{2+}$ in the zeolite to PVS in solution persisted for hours.⁸ However, the absence of back electron transfer across the zeolite-solution interface has not been established experimentally. Moreover, it should be resolved as to why the back electron transfer between stable ground state molecules, which is thermodynamically a much more favoured process than the forward electron transfer, does not occur appreciably within hours although the forward electron transfer from the shortlived excited state of $Ru(bpy)_{3}^{2+}$ to PVS occurs across the zeolite-solution interface within microseconds.

We report herein a photocatalytic system that achieves complete charge separation between $Fe³⁺$ in zeolite Y and an acceptor radical anion in solution by using 10-methylacridinium ion (AcrH+) loaded in the zeolite as a photocatalyst. The absence of the back electron transfer across the zeolite-solution interface has been confirmed experimentally.

Both Fe²⁺ (1.9 \times 10⁻⁵-8.2 \times 10⁻⁵ mol g⁻¹, 0.38-1.3 molecules per 10 supercages) and AcrH⁺ (1.4 \times 10⁻⁴ mol g⁻¹, 2.7 molecules per 10 supercages) were loaded into Na-Y zeolite by ion exchange with $Fe(CIO₄)₂$ and $(AcrH)ClO₄$ in acetonitrile (MeCN).? The visible absorption band of AcrH+ incorporated in the zeolite was observed at λ_{max} = 362 nm, which is significantly red-shifted compared with that in an MeCN solution (λ_{max} = 358 nm).¹⁰ Photolysis of the ion-exchanged zeolite (20 mg) suspended in an MeCN solution of TCNQ (1.0 \times 10⁻³ mol dm⁻³) under irradiation of a mercury lamp through a Pyrex filter at 298 K leads to the appearance of TCNQ^{$.-$} ($\lambda_{\rm max}$ 842 nm, ε_{max} 4.33 \times 10⁴ dm³ mol⁻¹ cm⁻¹)¹¹ in solution. The absorption spectra of the suspended solution stirred with a magnetic stirrer were monitored using an integrating sphere attachment. The concentration of $TCNQ -$ after photolysis for 21 h was determined as 5.5×10^{-5} mol dm⁻³, which corresponds to 13% of the initial amount of Fe2+ loaded in the zeolite. The initial rate of formation of TCNQ⁻⁻ under irradiation of the mercury lamp increases with an increase in the amount of $Fe²⁺$ loaded in the zeolite, $[Fe²⁺]$, to reach a limiting value at higher concentrations as shown in Fig. 1. A standard actinometer (potassium ferrioxalate)¹² was used for the quantum yield (Φ) determination. The Φ value for the formation of $TCNQ$ - in the photolysis of the Fe²⁺-AcrH⁺-zeolite sample (10 mg, Fe²⁺ = 8.2×10^{-5} mol g⁻¹) suspended in MeCN containing TCNQ (1.0 \times 10⁻⁴ mol dm⁻³) over a period of 40 min was estimated as 5.1×10^{-4} , which is compatible with the Φ value reported for the Ru(bpy)₃²⁺-zeolite system.⁸

Irradiation of the absorption band of AcrH+ (362 nm) of the Fe2+-AcrH+-zeolite suspended in MeCN causes fluorescence as shown in Fig 2. The fluorescence intensity *(I>* decreases with an increase in [Fe2+]. The fluorescence decay obeyed the firstorder kinetics. The fluorescence lifetime **(t)** also decreases with an increase in [Fe²⁺]. From the Stern–Volmer plot of I_0/I and τ_0 / τ *vs.* [Fe²⁺] are obtained the quenching constant K_q as 2.5 \times 10⁴ g mol⁻¹.

The formation of Fe³⁺ inside the zeolite accompanied by the formation of $TCNO⁻$ in solution was confirmed by the EPR spectra. The EPR spectra of the $Fe²⁺-AcrH⁺-zeolite$ sample after the photolysis for 20 h showed a very broad signal centred around $g \approx 2.0$ with a linewidth of *ca*. 1600 G together with a sharp signal at $g \approx 4.3$. The g values and linewidths of the EPR spectra agree with those reported for Fe^{3+} exchanged zeolites.¹³ A very sharp signal superimposed on the broad signal at $g \approx 2.0$ was also observed at $g \approx 2.004$ due to TCNQ \degree which remained on the surface of the zeolite. Thus, the actual electron source to reduce TCNQ to $TCNQ = \text{may}$ be Fe^{2+} loaded in the zeolite, which is oxidized to $Fe³⁺$ accompanied by the formation of TCNQ·

In an MeCN solution, electron transfer from TCNQ \cdot to Fe³⁺ occurs immediately upon mixing $Fe(C1O₄)₃$ and a sodium salt of

Fig. 1 Dependence of the initial rate of formation of TCNQ⁻ on the amount of Fe²⁺ loaded in the zeolite, [Fe²⁺], for the photolysis of the Fe²⁺-AcrH⁺zeolite (20 mg) suspended in an MeCN solution of TCNQ (1.0 \times 10⁻³ mol dm $^{-3}$)

Chem. Commun., **1996 213**

 $TCNQ -$ which was prepared independently, as expected from the low oxidation potential of TCNQ⁻⁻ (0.19 V *vs. SCE*).¹⁴ In order to examine the rate of back electron transfer from $TCNQ⁻$ in solution to Fe³⁺ in the zeolite across the zeolitesolution interface, we prepared the Fe3+ exchanged zeolite **Y.** The rates of back electron transfer from $TCNQ -$ in solution to Fe3+ in the zeolite were determined from a decrease in the absorption band of TCNQ⁻⁻ (λ_{max} 842 nm, ϵ_{max} 4.33 \times 10⁴ dm^3 mol⁻¹ cm⁻¹).¹¹ The initial maximum rate of electron transfer from TCNQ⁻⁻ (1.5 \times 10⁻⁵ mol dm⁻³) to Fe³⁺ (7.5 \times 10^{-6} mol g⁻¹) in the zeolite (20 mg) was only 1.5×10^{-10} dm^{-3} mol s^{-1} , which is orders of magnitude smaller than the rate of formation of $TCNQ -$ in Fig. 1. When the amount of Fe³⁺ loaded in the zeolite was increased to 1.5×10^{-4} mol g⁻¹, the initial decay rate of TCNQ⁻⁻ was also increased to 2.1 \times 10^{-8} dm⁻³ mol s⁻¹, which is still smaller than the initial rate of formation of $TCNQ -$ in the photolysis in Fig. 1. Thus, it has been confirmed that the back electron transfer from $TCNO⁻$ in solution to $Fe³⁺$ in the zeolite across the zeolite-solution interface is negligible over a timescale of hours.

The photocatalytic mechanism for the present charge separation system is shown in Scheme 1.

Upon irradiation, photoinduced electron transfer from Fe2+ to the singlet excited state of AcrH+ occurs inside the zeolite to yield Fe3+ and AcrH.. The free energy change of electron transfer from AcrH \cdot (E^0 _{ox} = -0.43 \overline{V} *vs.* SCE)¹⁵ to TCNQ $(E^0_{red} = 0.19 \text{ V})^{14}$ is largely negative. Thus, electron transfer (k_{et}) from AcrH \cdot in the zeolite to TCNQ in solution may occur in competition with the back electron transfer (k_b) from AcrH \cdot

Fig. 2 Fluorescence spectra of the Fe²⁺-AcrH⁺-zeolite suspended in MeCN at 298 K; [Fe²⁺]/mol g⁻¹ = *(a)* 1.9×10^{-5} , *(b)* 3.4×10^{-5} , *(c)* $6.4 \times$ (d) 9.4×10^{-5} ; [AcrH⁺] / mol $g^{-1} = 1.4 \times 10^{-4}$

Scheme 1

to Fe^{3+} in the zeolite. Once $TCNQ - i$ is formed in solution, the radical anion may be electrostatically repelled by the negatively charged surface of the zeolite, resulting in essentially no back electron transfer across the zeolite-solution interface.6 **By** applying the steady-state approximation to the reactive species ${}^{1}\text{AcrH+*}$ and $[\text{AcrH-Fe3+}]$ in Scheme 1, the dependence of the rate of formation of $TCNQ - (R)$ on [Fe²⁺] can be derived as given by eqn. (1), where I_a is the light intensity absorbed by AcrH⁺, K_q is the quenching constant

$$
R = \{k_{\text{et}}[\text{TCNQ}]_{a}/(k_{\text{b}} + k_{\text{et}}[\text{TCNQ}]_{a})\}\{I_{a}K_{q}[\text{Fe}^{2+}]/(1 + K_{q}[\text{Fe}^{2+}])\}\
$$
(1)

of the singlet excited state of AcrH+ by Fe2+ in the zeolite, and $[TCNO]_a$ is the concentration of $TCNQ$ adsorbed on the zeolite. From eqn. (1) a linear correlation between R^{-1} and $[Fe^{2+}]-1$ is obtained. In fact, a linear correlation is observed in a plot of R^{-1} *vs.* [Fe2+] using the data in Fig. 1. From the intercept and the slope a K_q value of 2.2 \times 10⁴ mol⁻¹ g was obtained, in accord with the value (2.5×10^4 mol⁻¹ g) obtained independently from the fluorescence quenching of \overrightarrow{A} crH⁺ by Fe²⁺ in the zeolite. Such an agreement indicates the validity of Scheme 1.

This work was partially supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture, Japan.

Foot note

t The total amount of Fe2+ in Fe2+-AcrH+-zeolite is taken as the sum of the amount of Fe²⁺ contained originally $(1.9 \times 10^{-5} \text{ mol g}^{-1})$ and that loaded by the ion exchange.

References

- 1 K. Kalyansundaram, *Photochemistry in Microheterogeneous Systems,* Academic, Orlando, 1987; M. Gratzel, *Heterogeneous Photochemical Electron Transfer,* CRC, Boca Raton, FL, 1989; V. Ramamurthy, *Photochemistry in Organized and Constrained Media,* VCH, New York, 1991; K. B. Yoon, *Chem. Rev.,* 1993,93, 321.
- 2 I. Willner, W. E. Ford, J. W. Otvos and M. Calvin, *Nature,* 1979,280, 830; I. Willner, J.-M. Yang, *C.* Laane, J. **W.** Otvos and M. Calvin, *J. Phys. Chem.,* 1981,85,3277; Y. Degani and I. Willner, J. *Am. Chem. SOC.,* 1983, 105, 6228; I. Willner and Y. Eichen, *J. Am. Chem. SOC.,* 1987,109,6862.
- 3 A. Slama-Schwork, M. Ottolenghi and D. Avnir, *Nature,* 1992, 355, 240.
- 4 J. Rabani, in *Photoinduced Electron Transfer,* ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988, part B, p. 642; R. E. Sassoon, **S.** Gershuni and J. Rabani, *J. Phys. Chem.,* 1992, 96, 4692.
- 5 J. K. Hurst, D. H. P. Thompson and J. **S.** Connolly, *J. Am. Chem. SOC.,* 1987,109,507.
- 6 J. S. Krueger, **J. E.** Mayer and T. E. Mallouk, *J. Am. Chem. Soc.,* 1988, 110,8232; Y. I. Kim and T. E. Mallouk, J. *Phys. Chem.,* 1992,96,2879; E. H. Yonemoto, G. B. Saupe, R. **H.** Schmehl, **S.** M. Hubig, R. L. &ley, B. L. Iverson and T. E. Mallouk, *J. Am. Chem. SOC.,* 1994, 116,4786.
- 7 S. Sankararaman, K. B. Yoon, T. Yabe and J. K. Kochi, *J. Am. Chem. SOC.,* 1991,113,1419; K. B. Yoon, **S.** M. Hubig and J. K. Kochi, *J. Phys. Chem.,* 1994,98, 3865.
- 8 M. Borja and P. K. Dutta, *Nature,* 1993, 362,43.
- 9 P. K. Dutta and W. Turbeville, J. *Phys. Chem.,* 1992, 96, 9410; P. K. Dutta and M. Borja, *J. Chem. SOC., Chem. Commun.,* 1993, 1568; M. Ledney and P. K. Dutta, *J. Am. Chem. SOC.,* 1995,117, 7687.
- 10 S. Fukuzumi and T. Tanaka, in *Photoinduced Electron Transfer,* ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988, part C, p. 578; S. Fukuzumi, M. Fujita and J. Otera, *J. Chem. SOC.. Chem. Commun.,* 1993, 1536.
- 11 L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, *J. Am. Chem. Soc.,* 1962,84, 3374.
- 12 C. G. Hatchard and C. A. Parker, *Proc. R. SOC. London, Ser. A,* 1956, 235, 5 18.
- 13 N. P. Evmiridis, *Inorg. Chem.,* 1986, 25, 4362.
- 14 S. Fukuzumi and Y. Tokuda, J. *Phys. Chem.,* 1992,96, 8409.
- 15 S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, *J. Am. Chem. SOC.,* 1987, 109, 305.

Received, 2nd October 1995; Corn. 51064523