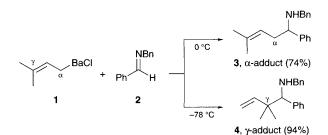
Highly regioselective allylation of imines with allylic barium reagents

Akira Yanagisawa, Kazuyoshi Ogasawara, Katsutaka Yasue and Hisashi Yamamoto*

School of Engineering, Nagoya University, Chikusa, Nagoya 464-01, Japan


Aldimines are transformed into homoallylic amines by treatment with allylic barium reagents in which both the α - and γ -adducts are selectively obtained by simply changing the reaction temperature.

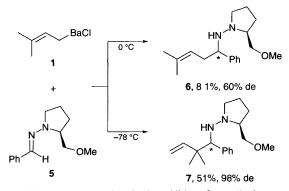
Reaction of allylic organometallic compounds with imines provides a beneficial route to homoallylic amines.¹ When γ substituted allylic metals are employed, a linear (α -adduct) and/ or branched product (γ -adduct) are obtained. Although the regioselectivity of the addition of γ -substituted allylic lithium, magnesium and zinc reagents to aldimines has been extensively studied,² there are no practical methods for α - and γ -selective reactions using these reactive allylic metals. Here we describe a new regioselective allylation of aldimines by allylic barium reagents in which both the α - and γ -adducts are readily obtainable by simply changing the reaction temperature.

Treatment of prenylbarium reagent 1,³ generated from prenyl chloride and barium in THF, with *N*-benzyl benzaldimine 2 at -78 °C afforded the γ -product 4 in 94% yield (Scheme 1). In marked contrast, the α -product 3 was obtained without contamination by the γ -isomer 4 from the same reaction carried out at 0 °C.

Table 1 shows the generality of the regioselective allylation of imines and shows that: (i) Reaction of γ -mono- and γ -disubstituted allylbarium reagents with **2** resulted in high product yields with remarkable regioselectivities which were temperature dependent (entries 1–6). An aliphatic imine was also successfully transformed into α - and γ -adducts in moderate yields by variation of the reaction temperature (entries 7 and 8). With *N*-phenyl benzaldimine, the corresponding α -adduct was predominantly formed even at -78 °C (entry 9). (ii) A high diastereoselectivity (95:5) was observed in the γ -allylation using a geranylbarium reagent (entry 3),⁴ whereas the (*E*)-2-decenylbarium reagent provided a lower diastereoselectivity (68:32, entry 5). The double bond geometry of the allylic barium reagent was not retained³ in the condensation reaction with imine above 0 °C (entries 4 and 6). (iii) Similar temperature dependency of the α/γ ratio was observed in the reaction of a cyclic imine with prenylbarium reagent 1 (entries 11–13). This result definitely indicated that the change of the reaction course did not arise from a *syn/anti* imine isomerization.⁵

The utility of allylic barium reagents for regioselective addition to imines was further demonstrated by asymmetric

Scheme 1 Regioselective addition of prenylbarium reagent 1 to imine 2


Table 1 Regioselective	addition of allyl	ic barium reagent	ts to imine ^a

Entry Barium reagent		Imine	Conditions		37.11	
	Barium reagent		T/°C	t/h	Yield (%) ^b	α : γ^c
1 2	BaCi 1	Ph H	$-78 \\ 0$	1 1.5	94 74	<1:99 >99:1
3 4	BaCl	2 2	-78 0	1 2.5	88 78	<1:99 ^d >99:1 ^e
5 6	C ₇ H ₁₅ BaCl	2 2	-78 20	2.5 1	75 95	< 1 : 99 ^f 94 : 6 ^g
7 8	1 1	NBn C ₈ H ₁₇ H	-78 0	5 3	52 42	<1:99 >99:1
9 10	1 1	NPh Ph H	-78 0	1 2	99 94	98:2 80:20
11 12	1 1		$-100 \\ -78$	1 (min) 1	64 95	<1:99 20:80
13	1		0	2	47	92:8

^{*a*} Allylation was carried out using an allylic barium reagent (3 equiv.) and imine (1 equiv.) in THF. ^{*b*} Isolated yield. ^{*c*} Determined by 300 MHz ¹H NMR analysis. ^{*d*} The diastereoisomeric ratio of the γ -product was 95:5. ^{*e*} The E:Z ratio of the α -product was determined to be 85:15 by HPLC analysis. ^{*f*} The diastereoisomeric ratio of the γ -product was 68:32. ^{*s*} The E:Z ratio of the α -product was determined to be 67:33 by HPLC analysis.

allylations with an optically active imine. Treatment of the SAMP-hydrazone 5⁶ with prenylbarium reagent 1 in THF at 0 °C almost exclusively afforded the α -allylated hydrazine 6 with 60% de (Scheme 2) [SAMP = (S)-(-)-1-amino-2-methoxymethylpyrrolidine]. When the reaction was carried out at -78 °C, the γ -adduct 7 was obtained as the major product in 98% de.

We assumed that this striking regiochemical outcome was due to the reversibility in the reaction of allylic barium reagents with aldimines.⁷ The temperature dependence of the α/γ ratio in the reaction of benzaldimine **2** with prenylmetal reagents (Li,† Mg‡ and Ba) was clearly demonstrated from the following experiment: the imine **2** was first treated with prenylmetal reagent at -78 °C for 1 h to complete the formation of the γ adduct **4**.§ The reaction mixture was then slowly warmed to

Scheme 2 Diastereo- and regio-selective addition of prenylbarium reagent 1 to SAMP-hydrazone 5

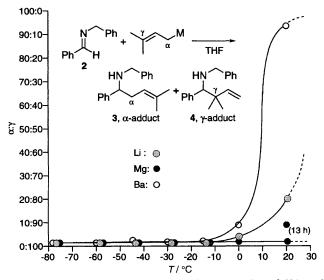


Fig. 1 Temperature dependence of α : γ in the reaction of *N*-benzyl benzaldimine 2 with prenylmetal reagents (Li, Mg and Ba)

20 °C. Sampling was carried out during this warming period at 15–20 °C intervals.¶ The α/γ ratio was measured by analysing the samples which were immediately quenched with sat. aq. NaHCO₃ (Fig. 1). With the barium reagent, the formation of α -adduct **3** was observed at 0 °C and predominated ($\alpha/\gamma = 93/7$) at 20 °C. No α -adduct **3** of the magnesium reagent was obtained even at 20 °C.

These results show that the γ -adduct 4 is kinetically produced and gradually isomerizes to the thermodynamically stable α adduct 3 at higher temperatures. This might be at least part of the reason for the high α -selectivity obtained with the reaction of allylic barium reagents with imines at 0 °C.

Financial support from the Ministry of Education, Science and Culture of the Japanese Government and the Asahi Glass Foundation is gratefully acknowledged.

Footnotes

[†] Prepared from prenyl chloride and lithium biphenylide.⁷

[‡] Prepared from prenyl chloride and Rieke-Mg.⁸

§ Yields of the γ -adduct obtained by the reaction of the imine 2 with prenylmetal reagents in THF at -78 °C for 1 h were, for M = Li, 75% and for M = Mg, 85%.

 \P A digital thermometer (Model HH81, OMEGA Engineering, Inc.) was used to measure the internal reaction temperatures.

References

- Reviews: G. Courtois and L. Miginiac, J. Organomet. Chem., 1974, 69, 1; Y. Yamamoto, Acc. Chem. Res., 1987, 20, 243; E. F. Kleinman and R. A. Volkmann, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and C. H. Heathcock, Pergamon, Oxford, 1991, vol. 2, p. 957; Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207.
- 2 C. Bouchoule and P. Miginiac, C. R. Hebd. Seances Acad. Sci., Ser. C, 1968, 266, 1614; L. Miginiac and B. Mauzé, Bull. Soc. Chim. Fr., 1968, 3832.
- 3 A. Yanagisawa, S. Habaue, K. Yasue and H. Yamamoto, J. Am. Chem. Soc., 1994, 116, 6130.
- 4 Diastereoselective γ-allylation of aldehydes using stereochemically homogeneous allylic barium reagents: S. Habaue, K. Yasue, A. Yanagisawa and H. Yamamoto, *Synlett*, 1993, 788.
- 5 G. E. Keck and E. J. Enholm, *J. Org. Chem.*, 1985, **50**, 146; Y. Yamamoto, T. Komatsu and K. Maruyama, *J. Org. Chem.*, 1985, **50**, 3115.
- 6 For additions of organometal reagents (Li, Ce, Yb) to SAMP-hydrazones, see: D. Enders, H. Schubert and C. Nübling, Angew. Chem., Int. Ed. Engl., 1986, 25, 1109; S. E. Denmark, T. Weber and D. W. Piotrowski, J. Am. Chem. Soc., 1987, 109, 2224; T. Weber, J. P. Edwards and S. E. Denmark, Synlett, 1989, 20; D. Enders and D. Bartzen, Liebigs Ann. Chem., 1991, 569; D. Enders, R. Funk, M. Klatt, G. Raabe and E. R. Hovestreydt, Angew. Chem., Int. Ed. Engl., 1993, 32, 418; D. Enders and J. Tiebes, Liebigs Ann. Chem., 1993, 173; D. Enders, M. Klatt and R. Funk, Synlett, 1993, 226.
- 7 Reversibility in the reactions of γ-monosubstituted allyllithium, magnesium and zinc reagents with aldimines has been observed at room temperature: L. Miginiac and B. Mauzé, *Bull. Soc. Chim. Fr.*, 1968, 4674;
 B. Mauzé and L. Miginiac, *Bull. Soc. Chim. Fr.*, 1973, 1832;
 B. Mauzé and L. Miginiac, *Bull. Soc. Chim. Fr.*, 1973, 1832;
 B. Mauzé and L. Miginiac, *Bull. Soc. Chim. Fr.*, 1973, 1082;
 B. Mauzé and L. Miginiac, *Bull. Soc. Chim. Fr.*, 1973, 1832;
- 8 N. L. Holy, Chem. Rev., 1974, 74, 243; T. Cohen and M. Bhupathy, Acc. Chem. Res., 1989, 22, 152.
- 9 T. P. Burns and R. D. Rieke, J. Org. Chem., 1987, 52, 3674.

Received, 19th September 1995; Com. 5/06161J