Equilibria between isomers of ruthenium dihydride complexes: detection of minor isomers by parahydrogen induced polarisation

Simon B. Duckett,* Roger J. Mawby and Martin G. Partridge

Department of Chemistry, University of York, York, UK YO1 5DD

Enhancements of NMR signals by parahydrogen induced polarisation aids detection of a minor isomer of complexes $[RuL_2(CO)_2(H)_2]$ (L = AsMe_2Ph, PMe_2Ph, PMe_3) containing inequivalent hydride ligands: some enhancement is also observed for the major isomer in which the hydrides are equivalent, and this is increased by use of $[RuL_2({}^{13}CO)({}^{12}CO)(H)_2]$.

We have recently shown that the enhanced absorption and emission signals observed in NMR spectra of nuclei arising from para-enriched-hydrogen $(p-H_2)$ can be used to detect and characterise materials present in concentrations too low for detection by normal methods.^{1,2} In this communication, we describe how the complexes [RuL₂(CO)₂(H)₂] (L = AsMe₂Ph, PMe₂Ph, PMe₃) behave with *p*-H₂. We show that, using this approach, we are able to identify minor isomers of **2** and **3** that were previously undetected and that the major isomers can be made *p*-H₂ active. The synthesis and reactions of **1**, **2** and **3** have already been reported, and importantly for this work they have been shown to undergo thermal exchange of the hydride ligands with H₂.³

Complex 1 has already been shown to exist as two isomers trans, cis, cis-[Ru(AsMe₂Ph)₂(CO)₂(H)₂], tcc-1, and all-cis-[Ru(AsMe₂Ph)₂(CO)₂(H)₂], ccc-1, (where L = AsMe₂Ph) in the ratio 4:3 at 298 K. When a C₆D₆ solution containing 1 (<1 mg) is placed under 3 atm of p-H₂ at 343 K, the ¹H NMR spectrum shown in Fig. 1(*a*) is obtained. This single-scan spectrum, collected with a $\pi/4$ excitation pulse, shows for the

Fig. 1 NMR spectra of $[\text{Ru}(L)_2(\text{CO})_2(\text{H})_2]$, obtained with *p*-H₂ in C₆D₆ showing the hydride region only. The antiphase components arise in transitions involving protons that originate from *p*-H₂. (*a*) ¹H spectrum of **1** at 343 K; (*b*) ¹H spectrum of **2** at 333 K; (*c*) ¹H spectrum of **3** at 333 K; (*d*) ¹H spectrum of **3**-1³CO at 333 K.

first time that substantial $p-H_2$ enhancements are possible at ruthenium and confirms that a concerted addition of $p-H_2$ to $[Ru(AsMe_2Ph)_2(CO)_2]$, formed by initial elimination of H₂, operates. The two polarised hydride resonances at δ -6.89 and -8.82 are assigned to the hydride ligands H_a and H_b of ccc-1 respectively.^{\dagger} The coupling, J(HH) is measured directly from the separation between the antiphase peaks, and the emission absorption profile reveals that J(HH) is negative. The enhanced antiphase character shown by each of these signals arises from an over-population of the $\alpha\beta$ and $\beta\alpha$ spin states in the coupled dihydride spin system, and corresponds to a 1035-fold increase in signal strength over that expected from reaction with normal H₂. This enhancement, five times larger than the greatest previously reported for a transition-metal complex, is still substantially smaller than the theoretical maximum of 17000.1 It is now accepted that concerted H₂ addition proceeds through a transition state, or intermediate, which involves substantial σ bonding between the two hydrogen centres.⁴ Stable nonclassical dihydrogen complexes of this type are known to have short relaxation times (T_1) that are dominated by dipole-dipole interactions.⁴ The observed enhancement will therefore be a function of the rate of addition and the efficiency of relaxation. The latter will be minimised in the spin-dilute arsine complex used in this study, and this explains the large enhancement observed.

Surprisingly, the hydride resonance due to *tcc*-1, observed at δ -7.45, is itself 60-fold enhanced, even though the two hydride ligands of this isomer are in magnetically equivalent environments. This represents the first time that substantial enhancements have been observed at a metal centre with both chemically and magnetically equivalent hydrides. A conventional two-dimensional nuclear Overhauser experiment with normal H₂ shows that the two isomers interconvert via a process in which the hydrides remain on the metal. The origin of the unprecedented enhancement in the *tcc*-1 isomer may originate in the inequivalence of the hydride ligands in ccc-1. Intramolecular isomerisation of ccc-1 to tcc-1 may lead to a loss of phase correlation, and hence enhancement, for the hydride signal of tcc-1. Similar effects have been seen in the spectra of organic hydrogenation products formed by hydrogen transfer from metal dihydride species that contain inequivalent hydride ligands.5

The complex $[Ru(PMe_2Ph)_2(CO)_2(H)_2]$ 2, was originally reported³ to exist in C₆D₆ solution solely as the trans, cis, cis isomer tcc-2. Even without the use of p-H₂, careful observation reveals the presence of the cis, cis, cis isomer ccc-2, but the tcc-2 isomer is in large excess (ca. 96:4). The presence of ccc-2 becomes obvious, however, when a ¹H NMR spectrum of a C_6D_6 solution of 2 (<1 mg) which has been treated with $p-H_2$ is run at 333 K. The four-scan spectrum shown in Fig. 1(b), obtained at 333 K, shows two sets of antiphase multiplets at δ -7.08 and $\delta - 7.66$, assigned to the hydride ligands H_a and H_b of ccc-2 respectively.† Each of these hydride resonances exhibits two phosphorus splittings in addition to the H_a-H_b coupling [J(HH) = -6 Hz] that separates the antiphase signals. The H_b resonance of *ccc*-2 appears in an otherwise clear spectral region and shows one large phosphorus splitting $[J(P_bH) =$ 73.6 Hz] and one smaller splitting $[J(P_aH) = 32.2 \text{ Hz}]$.

Chem. Commun., 1996 383

Unfortunately, the resonance due to H_a, at δ -7.08, overlaps with the triplet signal, δ -7.13 [*J*(PH) = 28.6 Hz], due to the hydride ligands of the major isomer *tcc*-2, and values for *J*(P_aH_a) and *J*(P_bH_a) cannot be accurately determined. However, the ratio of the hydride signal intensities for *tcc*-2 and *ccc*-2, determined from a ¹H{³¹P} spectrum, is 1:3.4 at 333 K. This corresponds to an 85-fold increase in signal intensity for the hydride resonances of isomer *ccc*-2 relative to those for *tcc*-2.

We used a modified heteronuclear multiple quantum correlation experiment (HMQC)⁶ to measure the chemical shifts for the two inequivalent phosphorus nuclei of ccc-2 [Fig. 2(a) and (b)].⁷ This approach makes optimal use of the p-H₂ enhancement seen in the hydride signature of the complex and employs the most receptive nucleus, ¹H, to obtain ³¹P chemical shift information. In addition, the ¹H-³¹P correlation separates the hydride resonances of the two isomers by virtue of the improved chemical shift dispersion seen in the ³¹P dimension. Four crosspeaks connecting the phosphorus nuclei, P_a , $\delta(^{31}P)$ 8.8, and P_b , $\delta(^{31}P)$ 0.19, to their proton coupling partners, H_a and H_b, are observed for ccc-2. Appropriate rows in the ¹H dimension reveal that the cross-peak at $\delta(^{1}H)$ -7.08, $\delta(^{3}P)$ 8.8, connecting H_a to P_a , is made up of signals with triplet multiplicity $[J(P_aH) = J(P_bH) = 23 \text{ Hz}]$. Examination of the columns at the point of intersection, or mapping the ³¹P dimension, reveals that each cross-peak is split into a doublet with $J(P_aP_b) = 28$ Hz. These data confirm that while H_b is *trans* to P_b and cis to P_a, H_a is cis to both P_a and P_b and therefore trans to CO. The additional cross-peak connects the hydride and phosphorus resonances of tcc-2.

When a C_6D_6 solution containing <1 mg of $[Ru(PMe_3)_2 (CO)_2(H)_2$] 3, is observed under normal H₂, only the tcc-3 isomer can be detected even after 10000 scans. However, with p-H₂, the *ccc*-3 isomer can be clearly identified. The four-scan ¹H NMR spectrum recorded with p-H₂ at 333 K is shown in Fig. 1(c) and contains two polarised resonances at δ -7.50 and -7.74, due to H_a and H_b of ccc-3. Once again, the resonance due to H_a overlaps with that for the *tcc* isomer at δ -7.38, while that due to H_b shows one large trans phosphorus splitting $[J(P_bH) = 73.6 \text{ Hz}]$, a smaller *cis* splitting $[J(P_aH) = 34.0 \text{ Hz}]$ and an antiphase component [J(HH) = -6.2 Hz]. The corresponding ${}^{1}\text{H}{-}^{31}\text{P}$ correlation spectrum shown in Fig. 2(c) and (d) illustrates the cross-peaks that connect the resonances due to the phosphorus nuclei, P_a , $\delta(^{31}P) - 6.85$ and P_b , $\delta(^{31}P)$ $-16.45 [J(P_aP_b) = 20 \text{ Hz}]$ to those of their hydride coupling partners, H_a and H_b and reveals that $J(P_aH) = J(P_bH) = 26$ Hz.[†] The ratio of the hydride signal intensity tcc-3 to ccc-3 was

Fig. 2 Selected cross-peaks (absolute value display) and projections from ${}^{1}H_{-31}P$ correlation spectra of $[Ru(L)_2(CO)_2(H)_2]$, obtained with p-H₂ in C_6D_6 at 333 K. ${}^{1}H_{-31}P$ correlation spectra showing the cross-peaks connecting H_a and H_b to P_b in *ccc*-2 (*a*), and H_a and H_b to P_a in *ccc*-2 and H_c to P_c in *tcc*-2 (*b*); ${}^{1}H_{-31}P$ correlation spectra acquired showing the cross-peaks for *ccc*-3 connecting H_a and H_b to P_b (*c*), and to P_a (*d*).

determined to be 1:2 at 333 K from the corresponding ${}^{1}H{}^{31}P{}$ experiment.

One of the major limitations of p-H₂ is that it only readily enhances signals that result from transportation of the p-H₂ nuclei into different magnetic environments. If p-H₂ is to be used to study the involvement of spin-dilute transition-metal carbonyl complexes in hydroformylation, or the water-gas-shift reaction, then the problem of chemical equivalence within a planar (H)₂M(CO)₂ metal core must be overcome. Magnetic inequivalence has been shown to result in p-H₂ activity in complexes with a planar (H)₂M(PR₃)₂ core⁶ and symmetrical hydrogenation products when they contain ¹³C.⁸

The major *trans,cis,cis* isomer of these ruthenium complexes thus represents an ideal system with which to examine whether similar effects result from ¹³CO incorporation. We therefore exposed a C_6D_6 solution of $[Ru(PMe_3)_2(CO)_3]$ 4, containing 36% ¹³CO to 3 atm of *p*-H₂. After *ca*. 100 s at 333 K, the ¹H NMR spectrum shown in Fig. 1(d) was recorded. The spectrum shows a complex polarised multiplet centred at δ -7.38 and two additional hydride resonances at δ -7.50 and -7.74. The two high-field signals correspond to those already seen for Ha and H_b in ccc-3, and possess weak ¹³C satellites from the $[Ru(PMe_3)_2(^{13}CO)(^{12}CO)(H)_2]$ ccc-3 isotopomer; the satellites are most clearly seen in the corresponding ${}^{1}H{}^{31}P{}$ spectrum. The appearance of the complex multiplet at δ -7.38 can also be easily explained: clearly, the p-H₂ activity of the *tcc* isomer of $[Ru(PMe_3)_2(^{13}CO)(^{12}CO)(H)_2]$ is enhanced as a result of the inequivalence generated by the ¹³CO. Attempts to utilise this isotopic perturbation are currently underway.

We are grateful to the University of York and the Royal Society for financial support. We appreciated helpful discussions with Professor R. N. Perutz, Dr G. K. Barlow and Dr B. A. Messerle. Dr M. K. Whittlesey and Mr J. M. Lynam are thanked for providing some of the ruthenium complexes used in this study.

Footnote

† Selected spectroscopic data for 1, 2 and 3 in C₆D₆ at 500.13 MHz (¹H) and 202.45 MHz (³¹P) recorded on 5 mm samples in a 5 mm inverse geometry probe. *ccc*-1: ¹H (343 K) δ -6.89 [H_a, *J*(HH) = -7 Hz], -8.82 [H_b, *J*(HH) = -7 Hz]. *ccc*-2: ¹H (333 K) δ -7.08 [H_a, *J*(P_aH) = *J*(P_bH) = 23 Hz, *J*(HH) = -6 Hz], -7.66 [H_b, *J*(P_bH) = 73.6 Hz, *J*(P_aH) = 32.2 Hz, *J*(HH) = -6 Hz]. ³¹P (333 K) δ -7.50 [H_a, *J*(P_P) = 28 Hz], 0.19 [P_b, d, *J*(PP) = 28 Hz]. *ccc*-3: ¹H (333 K) δ -7.50 [H_a, *J*(P_aH) = 34 Hz, *J*(HH) = -6.2 Hz], -7.74 [H_b, *J*(P_bH) = 73.6 Hz, *J*(P_aH) = 34 Hz, *J*(HH) = -6.2 Hz]. ³¹P (333 K); δ -6.85 [P_a, d, *J*(PP) = 26 Hz], -16.45 [P_b, d, *J*(PP] = 26 Hz].

References

- S. B. Duckett, C. L. Newell and R. Eisenberg, J. Am. Chem. Soc., 1993, 115, 1156; 1994, 116, 10548; S. B. Duckett, R. Eisenberg and A. S. Goldman, J. Chem. Soc., Chem. Commun., 1990, 511.
- 2 C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541.
- 3 J. M. Bray and R. J. Mawby, J. Chem. Soc., Dalton Trans., 1987, 2989; 1989, 589; R. J. Mawby, R. N. Perutz and M. K. Whittlesey, Organometallics, 1995, 14, 3268.
- 4 G. J. Kubas, Acc. Chem. Res., 1988, 21, 120; R. H. Crabtree, Acc. Chem. Res., 1990, 23, 95.
- 5 A. Thomas, M. Haake, F.-W. Grevels and J. Bargon, Angew. Chem., Int. Ed. Engl., 1994, 33, 755; J. Kandels, P. Kating and J. Bargon, J. Chem. Phys., 1993, 98, 6150.
- 6 A. Bax, R. H. Griffey and B. L. Hawkins, J. Magn. Reson., 1983, 301; M. H. Frey, G. Wagner, M. Vasak, O. W. Sorensen, D. Neuhaus, E. Worgotter, J. H. R. Kagi, R. R. Ernst and K. Wuthrich, J. Am. Chem. Soc., 1985, 107, 6847.
- 7 S. B. Duckett, G. K. Barlow, M. G. Partridge and B. A. Messerle, J. Chem. Soc., Dalton Trans., 1995, 3427.
- 8 J. Barkemeyer, M. Haake and J. Bargon, J. Am. Chem. Soc., 1995, 117, 2927.

Received, 13th October 1995; Com. 5/06796K

384 Chem. Commun., 1996