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Methyl nonactate is available with excellent 
stereoselectivity in only six steps from furan by application 
of sequential transformations. 

Actic acids 2 are the monomeric subunits of the macrotetrolides 
1, also known as actins or nactins, which have been isolated 
from various Streptomyces cultures (Scheme l).' The neutral 
ionophores2 1 display pronounced antiba~terial,~ insecticidal4 
and in part immunosuppressive5 activities. An unusual feature 
of the structurally elucidated macrotetrolides 1 is the alternating 
sequence6 of (+)- and (-)-enantiomen of the building blocks 2. 
With respect to an efficient synthesis of actins 1, including the 
achiral S4-symmetrical members such as nonactin (R1-R4 = 
Me)7 and tetranactin (Rl-R4 = Et),* an enantioselective 
preparation of both enantiomers of 29 is thus required. Though 
several syntheses of nonactic acid 2a10.11 and some reports on 
the synthesis of its homologues8.12 have been published, a short 
and general access to compounds 2a-c is still highly desirable 
in view of the biological activities associated with the actins. 
Here we report a practical route to methyl nonactate which 
emerged from our studies on intramolecular Diels-Alder 
reactions of vinylsulfonates and the synthetic elaboration of the 
resultant sultones.13 

Alcohol 3, prepared from furan and epoxypropane, reacted 
with vinylsulfonyl chloride to give sultone 4 by a tandem 
esterification/cycloaddition (Scheme 2).13u Subsequent treat- 
ment of 4 with 2 equiv. of methyllithium induced a tandem 
elimination/l,6-addition to yield the bicyclic compounds 
5a-c.13(, Both the intramolecular Diels-Alder reaction to 4 and 
the alkoxide-directed C-C coupling involved in the formation 
of 5 occur with complete diastereoselectivity, whereas a less 
regio- and stereo-selective protonation of the intermediate 
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allyllithium species produced upon 1,6-addition leads to a 
mixture of 5a-c. 

Ozonolysis of Sa, obtained isomerically pure by base- 
catalysed equilibration of 5a-c (ButOK, 77%),13' followed by 
eliminative work-up14 yielded a single hemi-acetal 6 (69%).? 
However, more straightforward and efficient is the corre- 
sponding transformation of the mixture Sa-c under identical 
conditions. Only the allylic sultones 5a and 5b are attacked, 
while 5c can be easily separated. The production of two 
diastereoisomeric methyl esters 63: implies a regioselective 
cycloreversion of the primary ozonides from 5a and 5b with 
formation of the intermediate carbonyl oxide distal to the 
electron-withdrawing sulfonate function and cyclization of the 
resultant y-hydroxy ketone moiety to a hemi-acetal. A Lewis 
acid-catalysed exchange of the hydroxy group in 6 against a 
phenylsulfanyl group15 in 77 sets the stage for a chemoselective 
reductive cleavage of both C-S bonds in one operation. 
Gratifyingly, upon treatment of 7 with Raney nickel, methyl 
nonactate 8 was directly obtained. Presumably, a reductive 
elimination first occurs to give a single 2,3-dihydrofuran16 
which in turn is immediately hydrogenated by the hydrogen 
adsorbed within the Raney nickel highly diastereoselectively 
(8 : 6-epi-87c.1 = 96 : 4)s from the sterically less hindered n- 
face. 

Saponification of 8 to nonactic acid 2a is known7h and thus, 
our sultone route from furan to 8 consisting of only six steps due 
to the application of sequential transformations17 also con- 
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Scheme 2 Reagents and conditions: i, BuLi, THF, -78°C then epoxy- 
propane, -78 "C to room temp., 65%; ii, CH2=CHS02C1, Et3N. THF, 0 "C 
to room temp., 90%; iii, MeLi, THF, -78 to 0 "C then sat. aqueous NH4CI, 
-78°C to room temp., 54%; iv, 03, NaHC03, CH2C12, MeOH, -78°C 
then Ac20, pyridine, CH2C12, room temp., 66%; v, PhSH, BF3.Et20, 
CH2C12, room temp., 93%; vi, Raney Ni, EtOH, room temp., 5 I % 
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stitutes the shortest synthesis of acid 2a with excellent 
stereocontrol. Since the tricyclic compounds corresponding to 
sultone 4 with an ethyl or isopropyl substituent instead of the 
methyl group are readily prepared in an analogous fashion,l3a 
this reaction sequence should offer a general access to all actic 
acid homologues 2a-c. Moreover, the transition to enan- 
tioselective synthesis is at hand, since the requisite enan- 
tiomerically pure epoxides which react with lithiated furan to 
the starting mater ia l~~b3~3~ for the tandem esterificationDiels- 
Alder reaction are easily available in both enantiomeric 
forms. ' 8 
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Footnotes 
t The relative configuration of 6 and 7 obtained from pure 5a (Fig. 1) was 
unambiguously established by X-ray diffraction analysis. Crystal data for 6 
(from 5a): CllHI8O7S,  M = 294.3, tnclinic, space group P i  (No. 2), a = 
8.370(1), b = 8.839(2), c = 10.027(2) A, (X = 77.56(2), fi = 81.74(1), y 
= 67.13 I)", V = 666.1(2) A3, Z = 2, D, = 1.467 g ~ m - ~ ,  p = 24.3 cm-1, 
F(000) = 312, colourless crystal with dimensions 0.5 x 0.3 x 0.2 mm, h 

d 0, -12 d I < 12, 2894 reflections collected, 2709 independent [Rlnt = 
0.0221, full-matrix least-squares refinement on F2,  176 parameters, GOF on 
F 2  1.05 1, final R indices [ I  > 20(1)] R = 0.043 and wR2 = 0.1 19, largest 
difference peak and hole 0.33 and -0.58 eA3. For 7 (from 5a): C17H2206S2, 
M = 386.5, monoclinic, space group P21/n (No. 14), a = 13.393(2), b = 
9.320(2), c = 15.195(2) A, p = 100.75(1)", V = 1863.4(5) A3, Z = 4, D, 
= 1.378 g cm-3, p = 28.6 cm-l, F(000) = 816, colourless crystal 0.3 x 
0.2 X 0.2 mm, h = 1.54178 A, T = 223(2) K, 0 = 4.04-74.16", 0 d h d 
16, -1 1  d k d 0, -18 d I d 18, 3959 reflections collected, 3795 
independent [Rint = 0.0161, full-matrix least-squares refinement on F2,  230 
parameters, GOF on F 2  1.237, final R indices [I > 20(4] R = 0.037 and 
wR2 = 0.104, largest difference peak and hole 0.36 and -0.35 eA3. Atomic 
coordinates, bond lengths and angles, and thermal parameters have been 
deposited at the Cambridge Crystallographic Data Centre. See Information 
for Authors, Issue No. 1. 
$ Capillary GC/MS analysis of 6 [after silylation with N,O-bis- 
(trimethylsilyl)acetamide] obtained from the mixture of 5a and 5b showed 
two products (93 : 7) with nearly identical mass spectra. 
0 According to capillary GC analysis of the crude product. 

= 1.54178 A, T = 223(2) K, 0 = 4.53-74.06", -10 d h d 9, -11 d k 
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