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Reaction of [PPh4I2[S2WS2HgCl2] with acetone 
affords a yellow vinyl complex 
[PPh&[S2WS2Hg (CH=CH2)2].0.5Me2C0 which on 
standing in a desiccator for 3-4 months transforms to a 
black ethynyl derivative 
[PPh&[ S2WS2Hg(C=CH)2].0.5MeCH0. 

Polymetallic sulfido complexes have stimulated profound 
research interest due to their solid-state properties, applications 
in catalysis and structural similarity and/or functional analogy 
to the biosites of metal-sulfur metalloenzymes. 1 The enhance- 
ment of electronic communication2 between the adjacent metal 
sites in S,S-bridged linear heteropolymetallic complexes con- 
taining MS42- (M = Mo, W) ions as terminal and/or bridging 
ligands24 has led to isolation of several organometallic 
tetrathiometallate c o m p l e x e ~ ~ ? ~  which are interesting catalytic 
precursors 1,s having implications in organic and organometallic 
synthesis.6 Although several mixed cyano-tetrathiometallate 
complexes of copper(1) and silver(1) are known,' no mixed 
complex of zinc, cadmium and mercury has yet been reported.8 
During our attempt to synthesize a mixed cyano-tetrathio- 
metallate mercury(I1) complex, a new compound 
[PPh4]2[S2WS2HgC12] 17 was isolated which on reaction with 
acetone yielded a yellow product subsequently characterized as 
[PPh&[S2WS2Hg(CH=CH2)2]-0.5Me2C0 2.t Upon standing 

in a desiccator, 2 underwent a topochemical conversion to a 
black ethynyl derivative, [PP~~]~[S~WS~H~(CECH)~]*O.~M~- 
CHO 3.j- 

Here we report the first example of vinylation of a metal 
centre by acetone in synthesising complex 2 from 1, and 
spontaneous dehydrogenation of the ethenyl complex, 2, to an 
ethynyl complex, 3, in the solid state. 

The gradual disappearance of the Y C = ~  vibration of acetone, 
with simultaneous growth of vCEc and an out-of-plane C-H 
deformation (of CHO)9 vibration in the IR spectra of 2 as a 
function of time (Fig. 1) clearly shows the transformation of 2 
into 3. The 13C NMR i75.5 MHz, (CD&SO SiMe41 chemical 
shifts of 2 at 6 117.1 and 118.3 are due to 13-carbon atoms of the 
coordinated vinyl grouplo while that for the a-carbon atom, 
observed at 6 151,1° is broad and unresolved. The authenticity 
of the assignments of I3C signals has been confirmed by 
J-modulated spin-echo for '3C coupled to lH, which is used to 
determine the number of attached protons to carbon. Weak 13C 
signals at 6 64.5 and 102.0 in 3 are due to the 13- and a-carbon 
atoms, respectively, of the coordinated ethynyl group. l o  The 'H 
[300 MHz, (CD&SO] signals of the acetone and acetaldehyde 
molecules occurring in the crystal lattices of 2 and 3 have been 
observed at 6 3.28 (d, 6 H, J 11.6 Hz) and 9.1 (s, 1 H, -CHO) 
respectively, the corresponding signals for the ethenyl (in 2) and 
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Fig. 1 Change of the IR spectra of 2 with time showing the disappearance 
of vCa of acetone, and emergence of vclc and n C - ~  of X H O ;  0 (a) ,  45 (h), 
75 (c), 90 ( d )  and 120 days (e). Vibrations of the phenyl groups of PPb+ are 
also shown for reference. 

Fig. 2 An ORTEP view of the anion of 2 with selected bond distances (A) 
and angles ("): Hg-W 3.299(1), W-S( 1) 2.210(6), W-S(2) 2.217(6), 
W-S(3) 2.172(6), W-S(4) 2.156(6), Hg-S( 1) 2.724(6), Hg-S(2) 2.743(6), 
Hg-C( 1) 2.04(2), Hg-C(2) 2.04(2), C( 1)-C( 1A) 1.30(2), C(2)-C(2A) 
1.29(2), S( 1 tHg-S(2) 82.9(2), S( 1)-W-S(2) 109.6(2), S(3)-W-S(4) 
109.0(2), C( I)-Hg-C(2) 143( I ) ,  W-S( l)-Hg 83.2(2), W-S(2)-Hg 82.7(2), 
Hg-C(l)-C(lA) 169(2), Hg-C(2)-C(2A) 176(2) 
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Fig. 3 An ORTEP view of the anion of 3 with selected bond distances (A) 
and angles ("): Hg-W 3.295(2), W-S( 1) 2.206(8), W-S(2) 2.217(8), 
W-S(3) 2.178(8), W-S(4) 2.142(8), Hg-S(l) 2.728(8), Hg-S(2) 2.738(9), 
Hg-C( 1) 2.05(3), Hg-C(2) 2.00(3), C(1)-C( 1A) 1.16(3), C(2)-C(2A) 
1.15(3), S( l)-Hg-S(2) 82.9(2), S(l)-W-S(2) 109.8(3), S(3)-W-S(4) 
108.2(3), C( l)-Hg-C(2) 147(2), W-S( l)-Hg 83.1(2), W-S(2)-Hg 82.7(2), 
Hg-C( l)X( 1A) 177(4), Hg-C(2)-C(2A) 172(4) 

ethynyl (in 3) groups are however not observed at room 
temperature probably due to fluxionality." 

The molecular structures of 2 and 3, determined by X-ray 
crystallography,$ consist of heterobinuclear anionic units of 
[S2WS2Hg(CH=CH)2I2- in 2 and [S2WS2Hg(C-CH)2I2- in 3, 
PPh4+ cations and disordered acetone (2) or acetaldehyde (3) 
molecules in the lattice. The ORTEP views of the anions of 2 
and 3 are shown in Figs. 2 and 3. The anion geometries in 2 and 
3 are best described as two edge-condensed tetrahedra. In both 
the dimers W atoms with two bridging and two terminal sulfido 
(SZ-) ligands display nearly tetrahedral coordination while each 
Hg atom is bonded to two terminal carbon atoms and two 
bridging sulfur atoms to complete a highly distorted tetrahedral 
(HgS2C2) kernel. The asymmetry in the WS2Hg bridge is 
reflected in the Hg-Sb12 and W-Sb13 bond lengths. The Hg-C 
and C-C bond distances of the coordinated ethenyl (in 2) and 
ethynyl (in 3) groups are well within the expected ranges. l 4  The 
positive and negative ion FAB-MS spectroscopic data3 also 
corroborate the structural analyses. 

The mechanisms of conversions 1 + 2 and 2 + 3 are not yet 
fully understood. Further investigations in this area are 
continuing. 
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Footnotes 
t 1 was synthesized by reacting HgCI2.2H20 (0.33 mmol) with KCN (0.66 
mmol) in aqueous media followed by addition of PPh4C1 (0.67 mmol) and 
[NH4I2WS4 (0.4 mmol); yield, 65%. IR(KBr) vlcrn-l: (W-S,) 490,480; W- 
Sb + Hg-Sb 440 (br); (Hg-Cl) 420; this rather high wavenumber is 
characteristic for the Hg-CI ~ibrati0ns.l~ 2 was obtained by slow 
crystallization of 1 from spectroscopic grade acetone-light petroleum (bp 
4MO"C); yield, 51.8%. The same product could also be obtained if 
acetone alone was used as the solvent. IR(KBr) v/cm-1: (W-S,) 485, 480; 
(M-Sb) 440,435; (C=O of acetone) 1720. Conversion of 2 into 3 starts after 
ca. 10-15 d and is completed in ca. 120 d to yield 3. Black crystals obtained 
from the corresponding yellow crystals remain diffractible; yield, 98.5%. 
IR(KBr) vlcm-I: (W-S,) 490,480; (M-Sb) 440 (br); (C=C) 2080; z(C-H) 

of -CHO 830. Satisfactory elemental analyses (C, H, S, Hg, W, Cl) were 
obtained for all the isolated complexes. Electronic spectra of the complexes 
were very similar, and typical for WS4-coordinated dlo metal complexes7 
(ca. 450, 390 and 270 nm). 
3 Crystal data for 2: [PPh&[S2W(p-S)2Hg(CH=CH2)2].0.5Me2C0, 
CS3 sH49Hg00 5P2S4W, M = 1274.5, yellow, monoclinic, space group 
P21/n, a = 17.703(3), b = 13.240(3), c = 23.632(5) A, fi = 110.83(3)", 
U = 5177(2) A3, Z = 4, p = 5.44 mm-1, F(000) = 2488. D, = 1.635 
g an-3, D,  = 1.65 g cm-3. 3453 observed [I > 2o(Z)] reflections (2 < 28 
< 42 O), Nicolet R3mfV diffractometer. Mo-Ka (h  = 0.71073 A), K ,  = 
0.064, wR2 (on F2)  = 0.209, gof = 1.169. 

For 3: [PPh4]2[S2W(p-S)2Hg(C=CH)2].0.5MeCH0, C53H44Hg00 s- 
P2S4W, M = 1263.5, black, monoclinic, space group P2,/c, a = 17.678(7), 
h = 13.258(5), c = 23.910(9) A, p = 112.75(4) ", U = 5168(3) A3.Z = 4, 
p = 5.45 mm-I, F(O00) = 2456, D, = 1.624 g ~ m - ~ ,  D,, = 1.62 g cm-3. 
27 14 observed [ I  > 2o(Z)] reflections ( 3  < 28 45 ") Enraf-Nonius CAD 4 
diffrdctometer, Mo-Ka (h = 0.71073 A), R ,  = 0.068, wR2 (onF2) = 0.197, 
GOF = 1.201. The intensity data for 2 and 3 were corrected for Lorentz- 
polarization and absorption (based on Y-scans) factors. The structures were 
solved and refined by Patterson (SHELX 7616), successive Fourier and full- 
matrix least-squares methods (SHELXL 93"): anisotropic thermal parame- 
ters for all non-hydrogen atoms (anionic carbon and disordered solvent 
atoms isotropic), the H-atom positions were calculated geometrically. 
Atomic coordinates, bond lengths and angles, and thermal parameters have 
been deposited at the Cambridge Crystallographic Data Centre. See 
Information for Authors, Issue No. 1. 
9 FAB-MS (NBA/Magic TFA): negative ion-mode; For 2, mlz 958 
{ (PPh&[M(C2H3)21) -, 537 [M(C2H3)]-, 280 { +[M(C2H3I2l2- ) positive 
ion-mode; for 2 m l z  1274 { (PPh4)2[M(C2H3)2(CH3)2CO] }+; for 3, m/z 1240 
[(PPh4)2M(C,H)(C,H,)]+, 1273 [ (PP~~)~M((C~H)C~HSCHOP)]+ (M = 
WS4Hg). 
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