A new synthetic route to substituted cyclam macrocycles

Burkhard König,*^{†a} Mario Pelka,^a Harald Zieg,^a Peter G. Jones^b and Ina Dix^b

^a Institut f
ür Organische Chemie der Technischen Universit
ät Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
 ^b Institut f
ür Anorganische und Analytische Chemie der Technischen Universit
ät Braunschweig, Hagenring 30, D-38106
 Braunschweig, Germany

Raney-nickel hydrogenation of macrocyclic phenylendiamine-dicarbonyl condensation products gives cyclam-type ligands in high yield with complete all-*cis* stereoselectivity.

Various new medicinal concepts for diagnosis and therapy, such as magnetic resonance imaging¹ or radioimmunotherapy,¹ utilize metal ions. To reduce their toxicity and adapt their physical properties to specific applications, a tight coordination of the metal ion with a functionalized ligand is necessary. In cases aza-crowns, such as 1,4,7,10-tetramany azacyclododecane (cyclen) or 1,4,8,11-tetraazacyclotetradecane (cyclam) and their N-alkylated derivatives have been employed as effective metal-ion binding sites.² Whereas several practical methods for the selective N-alkylation of commercial aza-crowns are available,3 the synthesis of C-substituted derivatives⁴ remains difficult. We report here a new economical strategy for the synthesis of C-substituted cyclams.

This strategy is based on unsaturated tetraaza macrocycles as starting materials. The parent system **1a** is readily accessible by metal-templated condensation⁵ of phenylenediamine and acetylacetone.⁶ Treatment of **1a** with 1 equiv. of BuⁿLi followed by an alkylation reagent then results in a clean substitution of one enamine position (**1b–e**), whereas 2 equiv. of base and alkylation reagent yield a 1:1 mixture of the 5',12'- and 5',14'- disubstituted products **1f–h.**[‡] Hydrogenation of the compounds thus obtained on Raney nickel⁷ finally leads to the fully saturated cyclam macrocycles. Reaction of **1a** with 150 × 10⁵ Pa H₂ in methanol for 36 h at 100 °C renders **2a**§ in 74% isolated yield (Scheme 1). Under these conditions all hydrogens were transferred to the macrocycle from one side, resulting in the exclusive formation of the all-*cis* (*R*,*S*,*R*,*S*) compound.¶ At lower temperatures hydrogenation of **1a** is not observed; higher

temperatures and increased H_2 -pressure give rise to a loss of stereoselectivity and lower yields.

Single crystals of **2a** were collected from the crude reaction mixture upon treatment with chloroform. The X-ray analysis reveals the proposed stereochemistry of the macrocycle (Fig. 1). Two chloroform molecules are weakly hydrogen bonded to nitrogen in the crystal. The diameter of the cavity of the macrocycle is 279 pm $[N(1)\cdots N(8)] \times 385$ pm $[N(4)\cdots N(11)]$.

The hydrogenation of the monosubstituted derivatives **1b–e** proceeds under the same conditions as described for the parent system, whereas disubstituted compounds call for longer reaction times and slightly higher temperatures.**

C-substituted cyclams, generated as described, display the expected metal-ion binding properties, as could be demonstrated in coordination experiments with **2a**. Metal complexes of **2a** with Ni(OAc)₂, Fe(H₂O)₇SO₄, Cu(OAc)₂, La(OAc)₃ and SmI₂ were prepared by simple mixing of the components in acetonitrile at room temperature. The X-ray structure analysis†† of [Ni(**2a**)]·2OAc·2MeOH·3H₂O, which displays crystallographic twofold symmetry, shows a square-planar coordination geometry of the nickel ion (Fig. 2). The coordinated metal ion is well protected in a pocket of hydrophobic residues, whereas the acetate counter ion is hydrogen bonded to the nitrogen atoms of the macrocycle.

In summary we have shown that the stereoselective *cis*hydrogenation of substituted condensation products of phenylenediamine and acetylacetone yields new cyclam macrocycles in a single step. The functionalized aza-crown derivatives of defined all-*cis* stereochemistry thus accessible might facilitate the synthesis of new metal complexes for medicinal applications.

Fig. 1 Structure of $2a \cdot 2CHCl_3$ in the crystal. Selected bond lengths (pm) and bond angles (°): N(1)–C(2) 146.6(4), N(1)–C(14) 146.9(4), C(2)–C(3) 154.5(4); C(2)–N(1)–C(14) 117.0(3), N(1)–C(2)–C(3) 110.2(2), N(1)– C(2)–C(18) 113.7(3). Distance of N atoms from best N₄ plane: ±24 pm.

Chem. Commun., 1996 471

Fig. 2 Structure of $2a \cdot Ni(OAc)_2$ in the crystal (solvent molecules not shown). Selected bond lengths (pm) and bond angles (°): Ni–N(8) 189.9(1), Ni–N(4) 193.5(1), N(4)–C(3) 151.0(2), N(4)–C(5) 151.7(2); N(8)–Ni–N(8') 178.31(8), N(8)–Ni–N(4') 88.23(6), N(8)–Ni–N(4) 91.95(6), N(4)–Ni–N(4') 167.71(8), C(7)–C(6)–C(5) 118.29(1). Distance of N atoms from best N₄ plane: ± 12 pm.

We thank Mr A. Weinkauf for the X-ray data collection of **2a**. Financial support from the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Footnotes

† E-mail: Koenig@SGI3.ORG-CHEM.NAT.TU-BS.DE

[‡] Treatment of **1a** with excess base followed by an alkylation reagent yields mainly twofold alkylation products. However, substantial amounts of the three-and even four-fold alkylated cycle could be detected in the crude product mixture.

§ Selected analytical data for **2a**: mp 60 °C. IR (KBr): $\tilde{\nu}/cm^{-1}$ 3292, 2950, 1474, 761. UV–VIS (MeCN) λ_{max} (lg ε) 192 nm (3.957), 250 (2.523). ¹H NMR (CDCl₃) δ 0.98 (m, 14 H), 1.38 (m, 22 H), 2.68 (brs, 4 H), 2.96 (brs, 4 H). MS (70 eV) *m/z* (%): 364 (26) [M⁺], 125 (100) (Found: C, 72.38; H, 12.40; N 15.18. Calc. for C₂₂H₄₄N₄: C, 72.47; H, 12.16; N, 15.37%).

¶ The crude reaction mixture was analysed by HPLC to verify that only a single diastereomer of 2a was obtained.

 $\|$ Crystal data for **2a**·2CHCl₃: C₂₄H₄₆Cl₆N₄: M = 603.35, crystal size 0.9 \times 0.8 \times 0.7 mm, monoclinic, space group P2₁/n, a = 1120.0(2), b = 1863.2(3), c = 1566.6(3) pm, $\beta = 106.11(2)^\circ$, U = 3.1407(10) nm³, $Z = 1266.11(2)^\circ$, U = 3.1407(10) nm³, Z

4, $D_c = 1.276 \text{ Mg m}^{-3}$, λ (Mo-K α) = 71.073 pm, $\mu = 0.57 \text{ mm}^{-1}$, F(000) = 1280, Stoe STADI-4 diffractometer, scan type ω - θ to $2\theta = 55^{\circ}$, T = 143 K, 8893 reflections, 7204 unique ($R_{\text{int}} = 0.0345$), refined⁸ on F^2 , 323 parameters, R(F) = 0.081, $R_w(F^2) = 0.198$.

** Disubstituted compounds were hydrogenated at 130 °C, H₂ pressure 150 \times 10⁵ Pa, for 48 h.

†† *Crystal data* for [Ni(**2a**)]·2OAc·2MeOH·3H₂O: C₂₈H₆₄N₄NiO₉: M = 659.54, crystal size 0.8 × 0.7 × 0.4 mm, orthorhombic, space group *Pnna*, a = 1389.61(12), b = 2102.7(3), c = 1181.07(12) pm, U = 3.4511(7) nm³, Z = 4, $D_c = 1.269$ Mg m⁻³, λ (Mo-Kα) = 71.073 pm, $\mu = 0.62$ mm⁻¹, F(000) = 1440, Siemens P4 diffractometer, scan type ω to 2θ = 55°, T = 173 K, 6711 absorption-corrected reflections, 3966 unique ($R_{int} = 0.0198$), 205 parameters, R(F) = 0.032, $R_w(F^2) = 0.0838$.

Atomic coordinates, bond lengths and angles, and thermal parameters of both structures have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1. Additionally, full details of the structure determinations have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlichtechnische Information mbH, 76344 Eggenstein-Leopoldshafen, Germany. Any request for this material should quote a full literature citation and the reference number CSD 404463 (ligand), 404464 (nickel complex).

References

- For recent applications of aza-crowns as metal ion binding sites see: S. Aime, M. Botta, S. G. Crich, G. B. Giovenzana, G. Jommi, R. Pagliarin and M. Sisti, J. Chem. Soc., Chem. Commun., 1995, 1885; T. J. Norman, D. Parker, F. C. Smith and D. J. King, J. Chem. Soc., Chem. Commun., 1995, 1877, 1879.
- 2 T. A. Kaden, *Pure Appl. Chem.*, 1988, **60**, 1117; P. V. Bernhardt and G. A. Lawrence, *Coord. Chem. Rev.*, 1990, **104**, 297; A. S. de Sousa and R. D. Hancock, *J. Chem. Soc., Chem. Commun.*, 1995, 415.
- B. Broitrel, B. Andrioletti, M. Lachkar and R. Guilard, *Tetrahedron Lett.*, 1995, **36**, 4995; J. E. Richman, *Tetrahedron Lett.*, 1977, 559; A. Dumont, V. Jacques, P. Qixiu and J. F. Desreux, *Tetrahedron Lett.*, 1994, **35**, 3707; W. J. Kruper, P. R. Rudolf and C. A. Langhoff, *J. Org. Chem.*, 1993, **58**, 3869; J.-J. Yaouanc, N. LeBris, G. LeGall, J.-C. Clement, H. Handel and H. des Abbayes, *J. Chem. Soc., Chem. Commun.*, 1991, 206; A. Bencini, A. Bianchi, C. Bazzicalupi, M. Ciampolini, P. Dapporto, V. Fusi, M. Micheloni, N. Narda, P. Paoli and B. Valtancoli, *J. Chem. Soc., Perkin Trans.* 2, 1993, 715.
- 4 M. L. Garrity, G. M.Brown, J. E. Elbert and R. A. Sachleben, *Tetrahedron Lett.*, 1993, **34**, 5531.
- 5 B. Dietrich, P. Viout and J.-M. Lehn, *Macrocyclic Chemistry*, VCH, Weinheim, 1993; E.-G. Jäger, H. Keutel, M. Rudolph, B. Krebs and F. Wiesemann, *Chem. Ber.*, 1995, **128**, 503 and references therein.
- 6 L. F. Tietze and Th. Eicher, *Reaktionen und Synthesen*, Thieme, Stuttgart, 1991.
- 7 For the preparation of Raney nickel see: A. A. Parlic and H. Adkins, J. Am. Chem. Soc., 1946, 68, 1471.
- 8 G. M. Sheldrick, SHELXL-93, a program for refining crystal structures, University of Göttingen, 1993.

Received, 22nd November 1995; Com. 5/07635H