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A [2]pseudorotaxane, consisting of the 
cyclobis(paraquat-p-phenylene) tetracation complexing a 
polyether chain intercepted in its middle by a 
hydroquinone ring and terminated at each end by 
12-crown-4 macrocycles, undergoes disassembly readily in 
acetonitrile solution on addition of alkali metal salts. 

In recent years, there has been considerable interest' in 
constructing and controlling molecular assemblies and supra- 
molecular arrays in solution. A combination of molecular 
recogni tion2.3 and self-assembly4~5 processes have been em- 
ployed to generate a large number of these assemblies and 
arrays. One such superstructure-the [2]pseudorotaxane6 1.2. 
4PF6 shown in Scheme l&-consists of a tetracationic cyclo- 
phane l 4 +  containing x-electron deficient bipyridinium units 
encircling an acyclic polyether derivative containing a n- 
electron rich hydroquinone ring. The association constant (Ka = 
2200 dm3 mol-I) for the complex 1-2.4PF6 is large in 
acetonitrile and so the [2]pseudorotaxane is the predominant 
species in solution. In a related [2]pseudorotaxane, in which a 
1,5-dioxynaphthalene residue replaces the hydroquinone ring in 
2, a light-induced unthreading process has been demonstrated7 
in the presence of the 'sacrificial' reductant, triethanolamine. 

Here, we describe the synthesis (Scheme 2) of the bis- 
12-crown-4 derivative 3,t which can act as both a host (towards 
alkali metal cations) and a guest (towards the tetracationic 
cyclophane l4+) in a supramolecular context. We go on to show 
how the binding of 3 by 14+ can be reduced by addition of metal 
cations, such as Li+ and Na+ ions, which are known to complex 
with 12-crown-4 derivatives. In this manner, we can achieve the 
unthreading of the [2]pseudorotaxane 1-3.4PF6 by chemical 
means.* The choice of 3 as a multi-topic cation binder was 
based on two observations: firstly, the fact that 2 forms6 a stable 
[2]pseudorotaxane 1.2.4PF6 with 1.4PF6 in solution, and 
secondly, the fact that 12-crown-4 derivatives are known9 to 
exhibit high affinities for binding alkali metal cations - 
particularly Li+ and Na+ ions - in solution. Inspection of CPK 
space-filling molecular models indicated that the 12-crown-4 
rings at the termini of 3 should slip10 through the cavity of the 
tetracationic cyclophane 14+. The basis for the chemically- 
controlled unthreading (Scheme 3) of the multi-topic 

[2]pseudorotaxane 1*3.4PF6 is thus established in principle. 
Now, we demonstrate that it happens in practice. 

The bis- 12-crown-4 derivative 35 has been prepared (Scheme 
2) from bis[2-(2-hydroxethoxy)ethoxy]benzene 2.5h Tosylation 
(TsC1-Et3N-DMAP-CH2Cl2) of 2 gave the ditosylated Fh in 
80% yield. Reaction (NaH-THF) of two molar equivalents of 
2-(hydroxymethy1)- 12-crown-49 6 with 5 afforded 3, as 
presumably a mixture of diastereoisomers,-f- in 70% yield. When 
equimolar acetonitrile solutions of 1.4PF6 and 3 are mixed, a 
red-orange colour appears immediately, indicating the forma- 
tion of the (Scheme 3) [2]pseudorotaxane 1-3.4PF6fi with its 
expected11 charge transfer (CT) absorption band centred on h = 
466 nm. The 1 : 1 stoichiometry of the complex was established 
by performing a Job plot12 on UV spectroscopic data obtained 
at this wavelength. A K, value of 610 dm mol-1 was obtained11 
for 1-3.4PF6 in CD3CN at 25 "C by lH NMR spectroscopy. This 
K, value, which corresponds to a free energy of complexation of 
3.8 kcal mol-1, means that this 1 : 1 complex is slightly weaker 
than that represented by the [2]pseudorotaxane 1.2.4PF6 which 
has a -AG O value of 4.6 kcal mol-1. The subsequent addition 
of integer (1 .o, 2.0, 3.0 etc.) molar proportions of either LiPF6 
or NaPF6 to 1-3.4PF6 in MeCN led to the suppression 
progressively of the CT band in the UV spectrum of the 
[2]pseudorotaxane. The addition of a large excess ( 10 equiv.) of 
NaPF6 to 1-3.4PF6 in MeCN brings about [Fig. 1 (A)] the almost 
complete suppression of the CT absorption band, whereas the 
same experiment performed on 1-2.4PF6 results in only a very 
slight suppression [Fig. 1(B)] of the CT absorption band. These 
experiments indicate that disassociation of 1-3.4PF6 occcurs in 
MeCN when alkali metal cations, that can bind to the 12-crown- 
4 end groups, are added to the solution. This disassembly of the 
[2]pseudorotaxane 1-3.4PF6, can also be monitored by 'H NMR 
spectroscopy in CD3CN solution. Upon addition of an excess of 
LiPF6 to a 6.43 X mol dm-3 solution, signals correspond- 
ing to the free tetracationic cyclophane 1.4PF6 are enhanced 
significantly.** It would appear that, upon addition of an excess 
of alkali metal salt to the [2]pseudorotaxane 1.3.4PF6, an 
unstable metallated complex 1.7.5PF6 results which then 
rapidly unthreads to give the tetracationic cyclophane l 4 +  and 
ultimately the dimetallated dumbbell species 3.2M.2PF6. This 
unthreading process can be monitored by a reduction in the 
intensity of the CT band centred at 466 nm for 1.3.4PF6. 
Effectively, the electrostatic repulsion of the tightly bound 
metal cations within the 12-crown-4 1.7.5PF6 results in its 
dissociation. 

Analysis by liquid secondary ion mass spectrometry 
(LSIMS) of the complex 1.3.4PF6 [Fig. 2(A)] reveals peaks at 
mlz 1617, 1472 and 1327 corresponding to the loss of one, two, 

Scheme 1 The self-assembly of the [2]pseudorotaxanes 1*2.4PF6 and 
1.3.4PF6 [2]pseudorotaxane 1.3.4PF6 

Scheme 2 The self-assembly and metal-mediated disassembly of the 
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Scheme 3 The synthesis of the dumbbell-shaped compound 3 containing two 12-crown-4 macrocycles 
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Fig. 1 The absorption UV spectra of ( A )  1-2.4PF6 in CD$N (3.18 
mmol dm-') at 298 K and of ( B )  1.3.4PF6 in CD3CN (3.18 mmol dm-3) at 
298 K 

and three hexafluorophosphate counterions, respectively. The 
spectrum of the [2]pseudorotaxane, following the addition of a 
solution of LiPF6 or in MeCN to the probe, is shown in 
Fig. 2(B). Although no peaks corresponding to the [2]pseudo- 
rotaxane 1.3.4PF6 can be observed, the dimetallated dumbbell 
species 3.2M.2PF6 can now be detected at mlz 853 in a peak 
which corresponds to the loss of one hexafluorophosphate 
counterion. 

The synthesis of a new multi-topic cation binder 3, which is 
capable of selectively recognising and binding both metal and 
organic cations, has been achieved. A [2]pseudorotaxane 
1-3.4PF6 has been self-assembled which can be disassembled 
chemically by the selective binding of alkali metal cations to the 
12-crown-4 components of the multi-topic cation binder 3. We 
have shown that it is possible to manipulate and control these 
systems at a molecular level in a manner which could lend them 
to molecular device development. 

We thank the British Nuclear Fuels Plc in UK for financial 
support of this research. 

Footnotes 
f Compound 3 was obtained as a mixture of diastereoisomers. 
$ Selected Data for 3: LSIMS 662 (M+); 'H NMR (300 MHz, CDC13) 6 6.85 
(4 H, s), 4.05 (4 H, m) and 3.80-3.50 (46 H, m); 13C NMR (75 Mz, CDC13) 

Fig. 2 The LSIMS of (A )  1.3.4PF6 and of ( B )  1.3.4PF6 with the addition of 
NaPF6 

6 153.2, 115.6, 78.6, 71.7, 71.5, 70.9, 70.8, 70.7, 70.4, 70.2, 69.9 and 
68.2. 
Q Compound 6 was purchased from Aldrich as the racemic modification. 
fl Selected data for 1.3.4PF6: LSIMS 1617 [M+ - PF6); the IH NMR 
spectrum of 1.3.4PF6 in CD3CN at 298 K indicates that the [2]pseudorotax- 
ane is equilibrating slowly with its components on the IH NMR time-scale. 
A set of resonances can be observed for the complexed tetracationic 
cyclophane 14+ and the complexed dumbbell compound 3 along with 
another set for the free cyclophane 14+ and the uncomplexed dumbbell 
compound 3. The ratio of the complexed 14+: free cyclophane l 4 +  at 298 K 
is 50: 50. Partial IH NMR (300 MHz, CD3CN) 6 8.99-8.92 (8 H, m, a- 
bipyridinium-complexed 14+), 8.91-8.89 (8 H, d, J 7 Hz, a-bipyridinium- 
free 14+), 8.12-8.09 (8 H, d , J  7 Hz, (3-bipyridinium-free 14+), 7.89-7.82 (8 
H, d, J 7 Hz, P-bipyridinium-complexed 14+), 7.80 (8 H, s, p-phenylene- 
free 14+), 7.60 (8 H, s, p-phenylenexomplexed 14+>, 5.78-7.72 (16 H, m, 
NCHZ-complexed and free l4+). 
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11 The ratio of complexed to uncomplexed l4+ varies with concentration and 
temperature. The P-bipyridinium and p-phenylene protons in 14+ com- 
ponent were used as independent probes for obtaining data from which 
a K ,  value was deduced. 
** The ratio of complexed to free tetracationic cyclophane is 44:56 at 
303 K in CD3CN. Upon addition of a large excess of LiPF6 to the 
[2]pseudorotaxane I-3.4PF6, the ratio of complexed to free tetracationic 
cyclophane becomes 8 : 92. 
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