Peter R. Ashton,^{*a*} Sayeedha Iqbal,^{*a*} J. Fraser Stoddart^{*a*} and Nigel D. Tinker^{*b*}

School qf Chemistry, University of Birmingham, Edgbaston, Birmingham, UK B1.5 2TT British Nuclear Fuels Plc, Springfields Works, Salwick, Preston, UK PR4 OJX

A [2]pseudorotaxane, consisting of the cyclobis(paraquat-p-phenylene) tetracation complexing a polyether chain intercepted in its middle by a hydroquinone ring and terminated at each end by 12-crown-4 macrocycles, undergoes disassembly readily in acetonitrile solution on addition of alkali metal salts.

In recent years, there has been considerable interest' in constructing and controlling molecular assemblies and supramolecular arrays in solution. A combination of molecular recognition^{2,3} and self-assembly^{4,5} processes have been employed to generate a large number of these assemblies and arrays. One such superstructure—the [2]pseudorotaxane⁶ 1.2. $4PF₆$ shown in Scheme 1—consists of a tetracationic cyclophane 1^{4+} containing π -electron deficient bipyridinium units encircling an acyclic polyether derivative containing a π electron rich hydroquinone ring. The association constant $(K_a =$ 2200 dm³ mol⁻¹) for the complex $1.2.4PF_6$ is large in acetonitrile and so the [2]pseudorotaxane is the predominant species in solution. In a related [2]pseudorotaxane, in which a 1,5-dioxynaphthalene residue replaces the hydroquinone ring in 2, a light-induced unthreading process has been demonstrated⁷ in the presence of the 'sacrificial' reductant, triethanolamine.

Here, we describe the synthesis (Scheme 2) of the bis-12-crown-4 derivative $3,$ † which can act as both a host (towards alkali metal cations) and a guest (towards the tetracationic cyclophane 1^{4+}) in a supramolecular context. We go on to show how the binding of 3 by 1^{4+} can be reduced by addition of metal cations, such as Li+ and Na+ ions, which are known to complex with 12-crown-4 derivatives. In this manner, we can achieve the unthreading of the [2]pseudorotaxane $1.3.4PF_6$ by chemical means.⁸ The choice of 3 as a multi-topic cation binder was based on two observations: firstly, the fact that **2** forms6 a stable [2]pseudorotaxane 1.2.4PF₆ with 1.4PF₆ in solution, and secondly, the fact that 12-crown-4 derivatives are known⁹ to exhibit high affinities for binding alkali metal cations secondly, the fact that 12-crown-4 derivatives are known⁹ to exhibit high affinities for binding alkali metal cations — particularly Li^+ and Na⁺ ions — in solution. Inspection of CPK space-filling molecular models indicated that the 12-crown-4 rings at the termini of 3 should slip¹⁰ through the cavity of the tetracationic cyclophane 14+. The basis for the chemicallycontrolled unthreading (Scheme 3) of the multi-topic

Scheme 1 The self-assembly of the [2]pseudorotaxanes 1.2.4PF₆ and **1.3.4PF₆** [2]pseudorotaxane 1.3.4PF₆

[2]pseudorotaxane $1.3.4PF_6$ is thus established in principle. Now, we demonstrate that it happens in practice.

The bis-12-crown-4 derivative $3\ddagger$ has been prepared (Scheme 2) from **bis[2-(2-hydroxethoxy)ethoxy]benzene** 2.5h Tosylation $(TsCl-Et_3N-DMAP-CH_2Cl_2)$ of 2 gave the ditosylated 5^{5b} in 80% yield. Reaction (NaH-THF) of two molar equivalents of 2-(hydroxymethy1)- 12-crown-49 **6** with **5** afforded 3, as presumably a mixture of diastereoisomers,[†] in 70% yield. When equimolar acetonitrile solutions of $1.4PF_6$ and 3 are mixed, a red-orange colour appears immediately, indicating the formation of the (Scheme 3) [2]pseudorotaxane $1.3.4PF₆$] with its expected¹¹ charge transfer (CT) absorption band centred on λ = 466 nm. The 1 : 1 stoichiometry of the complex was established by performing a Job plot¹² on UV spectroscopic data obtained at this wavelength. A K_a value of 610 dm mol⁻¹ was obtained. for $1.3.4PF_6$ in CD₃CN at 25 °C by ¹H NMR spectroscopy. This *K,* value, which corresponds to a free energy of complexation of 3.8 kcal mol^{-1}, means that this 1 : 1 complex is slightly weaker than that represented by the [2]pseudorotaxane $1.2.4PF_6$ which has a $-\Delta G^{\circ}$ value of 4.6 kcal mol⁻¹. The subsequent addition of integer (1.0, 2.0, 3.0 *etc.*) molar proportions of either LiPF₆ or NaPF $_6$ to 1.3.4PF $_6$ in MeCN led to the suppression progressively of the CT band in the UV spectrum of the [2]pseudorotaxane. The addition of a large excess (10 equiv.) of NaPF₆ to 1.3.4PF₆ in MeCN brings about [Fig. 1(A)] the almost complete suppression of the CT absorption band, whereas the same experiment performed on $1.2.4PF_6$ results in only a very slight suppression [Fig. $1(B)$] of the CT absorption band. These experiments indicate that disassociation of $1·3.4PF_6$ occcurs in MeCN when alkali metal cations, that can bind to the 12-crown-4 end groups, are added to the solution. This disassembly of the [2]pseudorotaxane $1.3.4PF_6$, can also be monitored by ¹H NMR spectroscopy in CD_3CN solution. Upon addition of an excess of LiPF₆ to a 6.43×10^{-3} mol dm⁻³ solution, signals corresponding to the free tetracationic cyclophane $1.4\overline{PF}_6$ are enhanced significantly.** It would appear that, upon addition of an excess of alkali metal salt to the [2]pseudorotaxane $1.3.4PF_6$, an unstable metallated complex $1.7.5PF_6$ results which then rapidly unthreads to give the tetracationic cyclophane $1⁴⁺$ and ultimately the dimetallated dumbbell species $3.2M.2PF₆$. This unthreading process can be monitored by a reduction in the intensity of the CT band centred at 466 nm for $1.3.4PF_6$. Effectively, the electrostatic repulsion of the tightly bound metal cations within the 12-crown-4 $1.7.5PF_6$ results in its dissociation.

Analysis by liquid secondary ion mass spectrometry (LSIMS) of the complex $1.3.4PF_6$ [Fig. 2(A)] reveals peaks at *mlz* 1617, 1472 and 1327 corresponding to the loss of one, two,

Scheme 2 The self-assembly and metal-mediated disassembly of **the**

Chem. Commun., 1996 479

Scheme 3 The synthesis of the dumbbell-shaped compound **3** containing two 12-crown-4 macrocycles

Fig. 1 The absorption UV spectra of (A) 1.2.4PF₆ in CD₃CN (3.18) mmol dm⁻³) at 298 K and of (\vec{B}) **1**.3.4PF₆ in CD₃CN (3.18 mmol dm⁻³) at 298 K

and three hexafluorophosphate counterions, respectively. The spectrum of the [2]pseudorotaxane, following the addition of a solution of $LIPF_6$ or NaPF₆ in MeCN to the probe, is shown in Fig. $2(B)$. Although no peaks corresponding to the [2]pseudorotaxane $1.3.4PF_6$ can be observed, the dimetallated dumbbell species $3.2M.2PF_6$ can now be detected at m/z 853 in a peak which corresponds to the loss of one hexafluorophosphate counterion.

The synthesis of a new multi-topic cation binder 3, which is capable of selectively recognising and binding both metal and organic cations, has been achieved. **A** [2]pseudorotaxane $1·3.4PF₆$ has been self-assembled which can be disassembled chemically by the selective binding of alkali metal cations to the 12-crown-4 components of the multi-topic cation binder **3.** We have shown that it is possible to manipulate and control these systems at a molecular level in a manner which could lend them to molecular device development.

We thank the British Nuclear Fuels Plc in UK for financial support of this research.

Footnotes

f Compound 3 was obtained as a mixture of diastereoisomers. \$ *Selected Data* for 3: LSIMS 662 (M+); 'H NMR (300 MHz, CDC13) 6 6.85 (4 **H, s),** 4.05 **(4 H,** m) and 3.80-3.50 (46 H, m); 13C NMR (75 Mz, CDC13)

480 *Chem. Commun.,* **1996**

Fig. 2 The LSIMS of (A) $1.3.4PF_6$ and of (B) $1.3.4PF_6$ with the addition of NaPF₆

6 153.2, 115.6, 78.6, 71.7, 71.5, 70.9, 70.8, 70.7, 70.4, 70.2, 69.9 and 68.2.

*^Q*Compound **6** was purchased from Aldrich as the racemic modification. fl *Selected data* for 1.3.4PF6: **LSIMS** 1617 [M+ - PF6); the IH NMR spectrum of $1.3.4PF_6$ in CD₃CN at 298 K indicates that the [2]pseudorotaxane is equilibrating slowly with its components on the **IH** NMR time-scale. A set of resonances can be observed for the complexed tetracationic cyclophane **14+** and the complexed dumbbell compound 3 along with another set for the free cyclophane 14+ and the uncomplexed dumbbell compound 3. The ratio of the complexed 1^{4+} : free cyclophane 1^{4+} at 298 K is 50: 50. Partial ¹H NMR (300 MHz, CD₃CN) δ 8.99-8.92 (8 H, m, αbipyridinium-complexed 14+), 8.91-8.89 (8 H, d, *J* 7 Hz, a-bipyridiniumfree 14+), 8.12-8.09 (8 **H,** d,J 7 **Hz,** (3-bipyridinium-free 14+), 7.89-7.82 (8 H, d, *J* 7 Hz, β-bipyridinium-complexed 1⁴⁺), 7.80 (8 H, s, *p*-phenylenefree 1^{4+}), 7.60 (8 H, s, *p*-phenylene-complexed 1^{4+}), 5.78-7.72 (16 H, m, $NCH₂$ -complexed and free $14+$).

¹¹The ratio of complexed to uncomplexed **l4+** varies with concentration and temperature. The β -bipyridinium and p-phenylene protons in 1^{4+} component were used as independent probes for obtaining data from which a *K,* value was deduced.

** The ratio of complexed to free tetracationic cyclophane **is** 44:56 at 303 K in CD₃CN. Upon addition of a large excess of LiPF₆ to the [2]pseudorotaxane I-3.4PF6, the ratio of complexed to free tetracationic cyclophane becomes 8 : 92.

References

1 *(a)* For controllable catenanes and rotaxanes, see: P. R. Ashton, R. A. Bissell, N. Spencer, J. F. Stoddart and M. S. Tolley, *Synlett*, 1992, 914; P. R. Ashton, R. Ballardini, V. Balzani, M. Blower, M. Ciano, M. T. Gandolfi, C. H. McLean, D. Philp, L. Prodi, N. Spencer, J. F. Stoddart and M. **S.** Tolley, *New J. Chern.,* 1993, **17,** 68; A. C. Benniston, A. Harriman and V. M. Lynch, *Tetrahedron Lett.,* 1994,35, 1473; R. Hoss and F. Vogtle, *Angew. Chern., Int. Ed. EngI.,* 1994, 33, 375; P. R. Ashton, L. Pérez-García, J. F. Stoddart, A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 571; F. Diederich, C. Dietrich-Buchecker, J.-F. Nierengarten and J.-P. Sauvage, *J. Chern. Soc., Chern. Cornmun.,* 1995, 781; H. Sleiman, P. Baxter, J.-M. Lehn and K. Rissanen, *J. Chern. Soc., Chern. Cornrnun.,* 1995,715; *(h)* For a discussion on possible applications, see: R. A. Bissell and J. F. Stoddart, *Cornpufations for the Nano-Scale,* Kluwer, Dordrecht, The Netherlands, 1993, p. 141; B. L. Feringa, W. F. Jager and B. Delange, *Tetrahedron,* 1993, 49, 8267; K. E. Drexler, *Nanosysterns, Molecular Machinery, Manufacturing and Computation,* Wiley, New York, 1992; *(c)* For systems with switch-like properties, see: **S.** Shinkai, M. Ishihara, K. Ueda and 0. Manabe, *J. Chern. Soc., Perkin Trans. I,* 1988, 1438; V. Goulle, A. Harriman and J.-M. Lehn, *J. Chem. Soc., Chem. Commun.*, 1993, 1034; P. D. Beer, J. P. Danks, D. Hesek and J. **F.** McAleer, *J. Chem. Soc., Chern. Cornrnun.,* 1993, 1735; J.-C. Rodriguez-Ubis, 0. Juanes and E. Brunet, *Tetrahedron. Lett.,* 1994, 35, 1295; M. Shimomura, **S.** Aiba, **S.** Oguma, **M.** Oguchi, M. Matsute, H. Shimada, R. Kagimara, H. Emori, K. Yishiwara, K. Okuyana, T. Miyashita, A. Watanabe and M. Matsuda, *Suprarnolecular Science, I,* 1994, 33; **M.** Nakamura, **A.** Ikeda, N. Ise, T. Ikeda, H. Ikeda, F. Toda and A. Ueno, *J. Chem. Soc., Chem. Cornmun.,* 1995, 721.

- 2 C. J. Pedersen, *J. Incl. Phenorn.,* 1988, **6,** 337; J.-M. Lehn, *J. Ind. Phenorn.,* 1988, **6,** 6351; D. J. Cram, *J. Incl. Phenom.,* 1988, **6,** 397; J.-M. Lehn, *Science,* 1993, **260,** 1762.
- 3 G. W. Gokel, *Crown Ethers and Cryptands,* Monographs in Supramolecular Chemistry, ed. J. F. Stoddart, The Royal Society of Chemistry, Cambridge, 1991; D. J. Cram and J. M. Cram, *Containers and Their Guests,* Monographs in Supramolecular Chemistry, ed. J. F. Stoddart, The Royal Society of Chemistry, Cambridge, 1994.
- 4 J. **S.** Lindsey, *New J. Chern.,* 1991, **15,** 153.
- *5 (a)* D. Philp and J. F. Stoddart, *Synfett.,* 1991,445; *(h)* P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, *C.* Vicent and D. **J.** Williams, *J. Am. Chern. Soc.,* 1992,114, 193; (c) D. B. Amabilino, P. R. Ashton, C. L. Brown, E. Córdova, L. A. Godinez, T. T. Goodnow, A. E. Kaifer, **S.** P. Newton, M. Pietraszkiewicz, D. Philp, F. M. Raymo, A. **S.** Reder, M. T. Rutland, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and D. J. Williams, J. *Am. Chern. Soc.,* 1995, **117,** 1271.
- 6 P. L. Anelli, P. R. Ashton, T. T. Goodnow, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and D. J. Williams, *Angew, Chern., lnt. Ed. Engl.,* 1991, 30, 1036.
- 7 R. Ballardini, V. Balzani, M. T. Gandolfi, **L.** Prodi, M. Venturi, D. Philp, H. G. Ricketts and J. F. Stoddart, *Angew. Chem., Int. Ed. Engl.*, 1993,32, 1301.
- 8 R. A. Bissell, E. Córdova, A. E. Kaifer and J. F. Stoddart, *Nature*, 1994, 369, 133.
- 9 R. B. Davidson, R. M. Izatt, J. J. Christensen, R. A. Shultz, D. M. Dishong and G. W. Gokel, *J. Org. Chern.,* 1984, 49, 5080; *Cation Binding by Macrocycles,* ed. Y. Inoue and G. W. Gokel, Marcel Dekker, New York, 1990.
- 10 For references on slippage, see: P. R. Ashton, M. Bělohradský, D. Philip and J. F. Stoddart, *J. Chern. Soc., Chern. Cornrnun.,* 1993, 1269; P. R. Ashton, M. Bělohradský, D. Philip and J. F. Stoddart, *J. Chem. Soc.*, *Chen?. Cornrnun.,* 1993, 1274; D. B. Amabilino, P. R. Ashton, M. Bělohradský, F. M. Raymo and J. F. Stoddart, *J. Chem. Soc., Chem. Commun.,* 1995,745; D. B. Amabilino, P. R. Ashton, M. Belohradsky, F. M. Raymo and J. F. Stoddart, *J. Chern. Soc., Cheni. Cornrnun.,* 1995, 751.
- I1 A. C. Benniston, A. Harriman, D. Philp and **J.** F. Stoddart, *J. Am. Chem. Soc.,* 1993, **115,** 5298.
- 12 Z. D. Hill and P. MacCarthy, *J. Chern. Ed.,* 1986, 64, 162.

Received, 6th October 1995; Corn. 5/06617D