Regiospecific access to cyclic allylic alcohols by reductive alkylation of

a-alkyloxy-epoxides

Luc Dechoux,? Eric Doris,? Charles Mioskowski*a.?

a: CEA, Saclay, Service des Molécules Marquées, Bat. 547, Département de Biologie Cellulaire et Moléculaire,

91191 Gif-sur-Yvette cedex, France

b: Laboratoire de Synthése Bio-Organique associé au CNRS, Université Louis Pasteur, Faculté de Pharmacie, BP 24, 74,

route de Rhin, 67401 Illkirch, France

Allylic alcohols are synthesized by treatment of
a-alkyloxy-epoxides with organolithium reagents; The
reaction proceeds via a carbenoid pathway.

In the presence of a strong base epoxides exhibit many different
reactivities,! including metallation of the oxirane ring (Scheme
1, path A). The highly reactive species 1 easily undergoes «-
elimination (Scheme 1, path B) leading to the carbenoid 2.2 An
alkyl-lithium insertion followed by Li,O elimination allows the
stereospecific synthesis of alkenes 3 (Scheme 1, path C).3 While
hydride migration furnishes isomerized ketone 5 (Scheme 1,
path D),# a 1,2-alkyl shift leads to «,B-unsaturated ketone 6 (R3
= OH) (Scheme 1, path E).> Classically, epoxides can be
converted to allylic alcohols by treatment with several basic
reagents through 3-elimination,® but in most cases without any
regioselectivity. Here we report a new regiocontrolled access to
allylic alcohols 8 by treatment of an oxirane ring bearing a
neighbouring (3-alkyloxy group (R3 = OMe) (Scheme 1, path
F) with an organolithium reagent.”
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We recently found that substituted cyclic allylic alcohols can
be synthesized from a-epoxy-ethers (Scheme 2) by treatment
with 2 equiv. of an organolithium reagent.

The reaction mechanism is illustrated for the synthesis of the
allylic alcohol 15 (Scheme 3). A proposed model involves
proton abstraction leading to an «-lithiated epoxide interme-
diate 12 that can readily undergo ring opening by «-elimination
to form an «-alkoxy-o’-alkyloxy-carbenoid 13.8 The insertion
of an alkyl group followed by instantaneous MeOLi elimination
(which dominates over Li,O elimination) leads to the corre-
sponding alkylated o,B-unsaturated alcohol 15 with total
regiocontrol (Scheme 3, path A).

In this particular case we were able also to isolate as a
byproduct (yield 14%) the tricyclomethoxy alcohol 16 as a
result of an intramolecular trapping [2 + 1] cycloaddition,
arguing the case for the occurence of a carbenoid intermediate
13 (Scheme 3, path B). Several alkyloxy epoxides were
prepared from the corresponding o,f-unsaturated ketones,
Scheme 4, and reacted with various organolithium reagents.¥
The results are summarized in Table 1.
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Table 1 Examples of allylic alcohol synthesis

Yield?
Entry Substrate RLi Products? (ratio %) (%)
MeO, Bu Bu
1 BuLi 95
(o) uLi >
OH
MeO, Bu Bu
2 (o) Buli >95
Q sec-BuLi ﬁ:/
MeO, Bu Bu
3 (o] tert-BuLi > 95
OH
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4 (o) MelLi 83
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@ If necessary, the products were chromatographed over silica gel pre-
treated with triethylamine. # Combined isolated yields.

The overall yields are excellent and range from 76 to >95%.
Many organolithium reagents were utilized (Table 1, entries
1-5), leading always to the expected compounds. All the
experiments were carried out with the syn a-alkyloxy epoxide
isomers,%10 but we also noticed that the corresponding anti-
substrates (Table 1, entry 6) undergo the same reaction,i
indicating that no stereochemical requirements are needed. The
methodology was applied to five and six membered rings (Table
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1, entries 1-10), while non-cyclic substrates failed to react via
a carbenoid path but afforded a classical (3-eliminated product
(Table 1, entry 11).

Treatment of substrate 9 with a butyl Grignard reagent led to
oxirane ring opening. However, BuLi treatment of the resulting
B-alkyloxy alcohol failed to give the corresponding allylic
alcohol 10. This experiment precludes an addition—elimination
mechanism, arguing the case for the insertion—elimination
pathway.

This publication describes a new regiospecific access to
cyclic allylic alcohols. The reaction proceeds via a carbenoid
stemmed from a metallated oxirane followed by RLi insertion
and subsequent MeOLIi elimination. This reaction should be of
further interest to organic chemists, for example, in the
synthesis of dienes.!!
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Footnotes

T Typical experimental procedure: BuLi (0.85 ml, 1.6 mol dm—3 in hexanes,
2.5 equiv.) was added dropwise to a stirred solution of 4-butyl-4-methoxy-
1-methyl-6-oxa-bicyclo[3,1,0]hexane (100 mg, 0.54 mmol, 1 equiv.) in 5 ml
anhydrous THF at —78 °C under argon. The mixture was allowed to warm
to room temperature and stirred for 1 h. The reaction was then quenched
with a pH 7 phosphate buffer (the products are acid-sensitive and easily
undergo dehydration into dienes) and extracted twice with AcOEt. The
combined organic layers were dried over MgSO, and concentrated.
2,3-Dibutyl-1-methyl-cyclopent-2-enol was obtained as a colourless oil
(Table 1, entry 1) and did not need further purification. All products were
fully characterised by 'H, '3C NMR and by mass spectroscopy. Selected
Spectral data for 2,3-dibutyl-1-methyl-cyclopent-2-enol (Table 1, entry 1).
'"H NMR(CDCl3, 200 MHz) 6 0.90 (t,J = 5.6 Hz,3H), 0.92 (t,J = 5.6 Hz,
3 H), 1.20-240 (m, 16 H), 1.31 (s, 3 H). 13C NMR (CDCl;, 50 MHz) & 13.9,
14.0, 22.7, 23.3, 24.4, 26.0, 28.7, 30.1, 31.2, 32.9, 40.0, 85.4, 139.2 and
140.2. IR (neat) cm—! 3423 (OH). MS (CI-NH3): m/z 193 (M* — OH,
100%).

1 The trans alkyloxy-epoxide was obtained as major product by MCPBA
epoxidation of the corresponding allylic methyl ether.
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