Enantioselective radical cyclization controlled by a chiral aluminium reagent
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Free radical cyclization of cyclohexyl 8-iodo-
nona-2,8-dienoate in the presence of a chiral aluminium
reagent, prepared from (R)-3,3'-bis(triphenylsilyl)-1,1’-
bi-2-naphthol and Me;Al, gives optically active
2-(2-methylenecyclopentyl)acetate in 63% yield and
46% ee.

Recently, remarkable progress has been made in stereochemical
control in radical C-C bond formation. High dia-
stereoselectivities have been reported in both substrate- and
auxiliary-controlled reactions! and efforts are now being
directed towards developing an enantioselective reaction.>? We
previously reported Lewis acid-promoted f3-diastereoselective
radical cyclization using o,-unsaturated (—)-8-phenylmenthyl
ester as a chiral radical acceptor.3 The presence of Lewis acid is
essential for both high diastereoselectivity and chemical yield.
The Lewis acid appeared to control the conformation of the «,f3-
unsaturated ester as s-rrans and enhance its reactivity as a
radical acceptor. Since bulky Lewis acids, such as methylalu-
minium  bis(2,6-di-zert-butyl-4-methylphenoxide) (MAD),*
gave especially good results, we expected that a chiral
aluminium reagent, such as (R)-3 or (R)-4,5 might effect an
asymmetric induction in the reaction of achiral substrates la
and 1b (Scheme 1). Here we report the first example of an
enantioselective radical cyclization controlled by a chiral
aluminium reagent.

The cyclization of 1a at —78 °C in the presence of 1 equiv. of
(R)-3, prepared from (R)-binaphthol and trimethylaluminium in
situ, gave the cyclized product (R)-2a in 89% yield and with an
ee of only 2% (Table 1, run 1). A high concentration of the
Lewis acid was expected to increase the enantioselectivity,
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however, the low solubility of (R)-3 in CH,Cl, prevented us
from using it at a higher concentration. We hence used the chiral
aluminium reagent (R)-4, which we expected to be more soluble
in CH,Cl, than (R)-3 and may provide higher selectivity
because of its bulkiness. The reaction of 1a in the presence of 1
equiv. of (R)-4 gave (R)-2a in 75% yield, and with a slightly
increased ee (12%, run 2). When, 1a was treated with a higher
concentration of (R)-4 (4 equiv.), a higher ee (36%) was
observed, as expected (run 3).

Six-membered ring formation in this system has been shown
to be inefficient at —78 °C3 and the uncyclized product, 5 was
a major product. Hence, the cyclization of 1b was carried out at
0°C in the presence of 4 equiv. of (R)-4 to give 2b in 63% yield
and 46% ee, along with § (21%, run 4).

Five-membered ring formation using 6, in which the o,p3-
unsaturated ester was replaced by amide, proceeded smoothly
even without Lewis acid present (Scheme 2). The reaction in the
presence of 4 equiv. of (R)-4 at —78 °C gave (5)-7 in 83% yield
and 26% ee. Thus, the chirality of the product was reversed by
altering the structure of the radical acceptor.

In the transition state, the «,3-unsaturated ester complexed by
Lewis acid favours s-trans conformation. On the other hand, the

Table 1 Enantioselective radical cyclization of 1a and 1b<

Starting  Lewis Concentration Yield of ee
Run material  acid /mol dm—3 Equiv. 2 (%) (%)
1% la (R-3 0.09 1 89 2
2 la (R4  0.09 1 75 12
3 1a (R4 036 4 72 36
4 1b (R)-4 036 4 63+ 48

a The concentration of 1 was kept at 0.09 mol dm—3 in all of the reactions.
b Cyclohexyl nona-2,8-diencate 5 was obtained in 21% yield as a by-
product.
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o,B-unsaturated amide favours the s-cis conformation.! This
appeared to be the main reason for the change in the absolute
configuration of the major product.

The absolute configurations of the products 2a, 2b and 7 were
determined as follows. Hydrolysis of 2a and 2b, followed by
condensation with (—)-8-phenylmenthol, gave (R)-8a and (R)-
8b respectively. These compounds have been synthesized
previously,3# and the de of each compound was determined by
'H NMR. Compound 7 was converted to (S)-8a via the
carboxylic acid 9 (Scheme 3).
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Scheme 3 Reagents and conditions: i, NaOH, aq. MeOH; ii, 2,4,6-tri-
chlorobenzoyl chloride, Et;N, (—)-8-phenylmenthol, DMAP, toluene; iii,
DIBAL-H; iv, ButOH, 2-methylbut-3-ene, NaClO,, NaH,PO4
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Footnote

1 Typical experimental procedure: To a stirred solution of (R)-3,3'-
bis(triphenyisilyl)-1,1’-bi-2-naphthol (1.41 g, 1.76 mmol) in CH,Cl, (2.64
ml) was added Me;Al (1.0 mol dm—3 in hexane, 1.76 ml) at room temp.
under argon. The solution was stirred for 1 h. The resulting solution of (R)-4
in CH,Cl; (0.4 mol dm—3, 4.4 ml) was then added to 1b (159 mg, 0.44
mmol) at room temp. under argon. To this mixture, Et;B (1.0 mol dm—3 in
hexane, 0.46 mmol) and Bu3;SnH were added. After stirring for 20 min, 1
mol dm—3 HCI was added and the aqueous layer extracted with EtOAc. The
combined ether extracts were then washed with brine and then evaporated
to give a residue, which was purified by silica gel column chromatography
(CH,Cl;:hexane = 2:1, then ether:hexane = 1:20) to give 2b (65 mg,
63%) and 5§ (21 mg, 21%).
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