Rhodium catalysed cross-coupling of alkenes by C–H activation : addition of alkenic C–H bonds of 2-vinylpyridines to alkenes

Yeong-Gweon Lim,^{a,b} Jung-Bu Kang^b and Yong Hae Kim*^a

^a Department of Chemistry, Korea Advanced Institute of Science and Technology, Guseong dong Yuseong, Taejon, 305-701, Korea ^b Division of Chemistry, Agency for Defense Development, Yuseong, PO Box 35-1, Taejon 305-600, Korea

2-Vinylpyridines react with alkenes in the presence of rhodium(1) as catalyst to give alkylated products.

The formation of C–C bonds by activation of π -unsaturated C–H bonds is of particular value. Transition metal complexes have been reported to activate the C–H bonds.¹ Vinylic C–H activation of the olefins has been especially investigated.² Alkylation at the vinylic position of alkenes *via* C–H bond activation by Rh¹ has not been reported. Recently, Trost *et al.*³ and Muria *et al.*⁴ independently reported that addition of C–H bonds in trisubstituted α , β -enones to alkenes was successfully achieved by use of (Ph₃P)₃RuH₂(CO) as a catalyst. During the course of our studies of alkylation using rhodium complex catalysts,⁵ we have found that 2-vinylpyridines reacted with olefins at the β -position in the presence of the rhodium(I) complex, (Ph₃P)₃RhCl, as a catalyst to give the highly chemoselective cross coupled β -alkylated products.

Treatment of 2-isopropenylpyridine 1a and 2-a-styrylpyridine 1b with 5 equiv. of alkene 2 in toluene with 10% (Ph₃P)₃RhCl 3 at 100-130 °C gave excellent isolated yields of the linear alkylated products 4, respectively (Scheme 1). Other alkylated and self-dimerized products of 1 could not be detected in the reaction mixture. When an excess amount of 2 was used compared to 1a [2:1a = 5, 2; R'=Me(CH₂)₃], the reaction time to completion was 19 h (Table 1, run 1). But when the ratio was 10, the reaction took 4 h (run 2). The results of the alkylation are listed in Table 1. The alkylated products of 1a were a mixture of trans- and cis-isomers in a 9:1 ratio. $2-\alpha$ -Styrylpyridine 1b reacted with hex-1-ene at low temperature to exclusively give the cis-isomer in an 8% yield (run 8). As the reaction temperature increased, the ratio of trans-isomer increased as shown in run 9. 3.3-Dimethylbut-1-ene also gave the bisalkylated product in a minor amount together with the monoalkylated product (run 12).

6-Methyl-2-vinylpyridine **5** reacted with pent-1-ene (5 fold excess) at 120 °C in toluene with 10% **3** to give the alkylated product **6** and two self-dimerized products of **5** in a 35:65 ratio in aquantitative yield after chromatographic isolation (Scheme 2). The alkylated product, 6-methyl-2-(hept-1-enyl)pyridine **6** was a mixture of *cis*- and *trans*-isomers in a 90:10 ratio.† At 90–100 °C, the reaction of **5** with non-1-ene exclusively gave the *cis*-isomer (*J* 11.86 Hz), 6-methyl-2-(undec-1-enyl)pyridine in 15% yield; the *trans*-isomer could not be detected in the reaction mixture by ¹H NMR and GC–mass spectroscopy. But, at 160 °C, **5** reacted with non-1-ene to give the *trans*-isomer as the major product in 25% yield (*trans*:*cis* = 98:2).

Scheme 1

To understand the effect of the pyridine ring in cyclometallation, 1,1-diphenylethylene 7 which does not contain a nitrogen atom was treated with hex-1-ene [$R = Me(CH_2)_3$] under the same conditions (Scheme 3). No reaction occurred; the starting material was quantitatively recovered. This fact shows that the pyridine ring plays an important role in cyclometallation for C–H bond activation.

From the above results a possible mechanism for this reaction can be postulated (Scheme 4). The first step must be the formation of the rhodium(III) hydride **9** via the vinylic C–H bond cleavage of 2-vinylpyridine by Rh^I. The stable vinyl metal complexes resulting from the vinylic C–H bond activation of

Table 1Chemoselective catalysed addition of 2-vinylpyridines toalkenesa

Run	R	R'	Reaction temp/ °C	Reaction time /h	Yield [»] (%)	trans:cis
1	Me	Me(CH ₂) ₃	110	19	96	93:7
2		$Me(CH_2)_3^c$	110	4	100 ^d	60:40
3		$Me(CH_2)_5$	115	20	99	90:10
4		$Me(CH_2)_6$	115	20	99	92:8
5		Me ₃ Si	110	19	64 ^e	90:10
6		PhOCH ₂	110	20	65	90:10
7	Ph	$Me(CH_2)_2$	90	18	77	73:27
8		$Me(CH_2)_3$	6067	18	8	0:100
9		$Me(CH_2)_3$	130	24	99	70:30
10		Me(CH ₂) ₅	100	24	86	76:24
11		Me(CH ₂) ₇	110	18	78	75:25
12		Me ₃ C	100	16	92f	64:36
13		p-MePh	120-130	42	31	76:24
14		(EtO) ₃ Si	110	18	73	50:50

^{*a*} Substrate : $(Ph_3P)_3RhCl$: alkene = 1 : 0.1 : 5. ^{*b*} Isolated yield based on substrate. ^{*c*} 10 equiv. of the alkene was used. ^{*d*} GC-yield. ^{*c*} Yield including the bisalkylated product (44%). ^{*f*} Yield including the bisalkylated product (13%).

CH₂

7

Chem. Commun., 1996 585

2-vinylpyridine by the transition metal complex have been previously reported.⁶ Hydride insertion into the coordinated alkene in the complex **10** gave the alkyl metal complex **11** as an intermediate in an anti-Markownikoff fashion. The stable primary metal alkyl complex **11**, an anti-Markownikoff intermediate, underwent reductive elimination to give the *cis*-isomer

Scheme 4 Proposed alkylation mechanism of the vinyl moiety in 2-vinylpyridine

4 by the external ligand.⁷ The *cis*-isomer forms first and then isomerizes to the *trans* isomer.

This work was supported by Agency for Defense Development, Korea Advanced Institute of Science and Technology and CBM.

Footnote

† The structure was confirmed by comparison of the authentic *trans*-isomer of 6-methyl-2-(1-heptenyl)pyridine prepared from 6-methyl-2-pyridyl-carboxaldehyde with hexyl(triphenyl)phosphonium bromide/sodium hydride.

References

- J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, *Principles and Application of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA, 1987; A. Yamamoto, *Organotransition Metal Chemistry*, Wiley, New York, 1986; R. H. Crabtree, *The Organometallic Chemistry of the Transition Metals*, Wiley, New York, 1988.
- 2 T. W. Bell, S.-A. Brough, M. G. Partridge, R. N. Perutz and A. D. Rooney, *Organometallics*, 1993, **12**, 2933 and references cited therein.
- B. M. Trost, K. Imi and I. W. Davies, J. Am. Chem. Soc., 1995, 117, 5371.
- 4 F. Kakiuchi, Y. Tanaka, T. Sato, N. Chatani and S. Murai, *Chem. Lett.*, 1995, 679
- 5 Y.-G. Lim, Y. H. Kim and J.-B. Kang, J. Chem. Soc., Chem. Commun., 1994, 2267.
- 6 G. Jia, D. W. Meek and J. C. Gallucci, Organometallics, 1990, 9, 2549; A. Albinati, C. Arz and P. S. Pregosin, J. Organomet. Chem., 1987, 335, 379; R. J. Foot and B. T. Heaton, J. Chem. Soc., Chem. Commun., 1973, 838.
- 7 J. Schwartz, D. W. Hart and J. L. Holden, J. Am. Chem. Soc., 1972, 94, 9269.

Received, 20th November 1995; Com. 5/07555F