Synthesis and structure of Cs_2Te_{13} and Cs_4Te_{28} , tellurium-rich tellurides on the methanolothermal route to Cs_3Te_{22}

William S. Sheldrick* and Michael Wachhold

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Reaction of Cs₂CO₃ and As₂Te₃ in superheated methanol at 160 and 180 °C afford Cs₂Te₁₃ and Cs₄Te₂₈, respectively, whose anionic structures contain Te₁₃²⁻ chains (Cs₂Te₁₃), Te₆²⁻ chains and Te_n rings (n = 4,8) (Cs₄Te₂₈) as building units.

Intermediate-temperature synthetic techniques including flux and solvatothermal methods have been developed in recent years to enable the incorporation of molecular building blocks such as chains X_n^{2-} and rings X_n (X = S, Se, Te) into polychalcogenides.¹⁻³ For instance, we have recently reported the methanolothermal preparation of $RbTe_6^4$ and $Cs_3Te_{22}^5$ as the first members of a new class of very tellurium-rich alkalimetal tellurides $M_x Te_y$ with y/x > 4. $Cs_3 Te_{22}$ contains both isolated crown-shaped Te₈ rings and planar sheet anions† $\frac{2}{2}[Te_6^{3-}]$ constituted of tellurium atoms with linear and T-shaped coordination geometries. Extended Hückel calculations on Cs₃Te₂₂ by Hoffmann and coworkers⁶ demonstrated that the geometries of the anionic Te atoms are determined by their particular electron count. These authors predicted that Cs₃Te₂₂ will be metallic and have suggested two structurally phases $[Cs(Te_8)]^+[CsTe_6]^$ or Cs_2Te_{14} , related and $[Cs(Te_8)]_3^{3+}[CsTe_6]^{3-}$ or Cs_4Te_{30} . Kanatzidis⁷ concluded that related compounds with more than one identical layer might be possible as part of a homologous family.

The presence of two such strikingly different tellurium components in Cs_3Te_{22} can only be explained by assuming an alkali-metal directed template control of compound formation involving several reactions steps. We have now established that the reaction of Cs_2CO_3 with As_2Te_3 in superheated methanol, at temperatures lower than previously employed for Cs_3Te_{22}

Fig. 1 Coordination of Cs(2) by the Te_{13}^{2-} chain in Cs₂Te₁₃

 $(195 \,^{\circ}\text{C})$,⁵ leads to the formation of two related tellurium-rich tellurides with novel building units.‡ Cs₂Te₁₃ may be obtained together with Cs₂Te₅⁸ at 150–160 $^{\circ}\text{C}$, Cs₄Te₂₈ together with Cs₂Te₅ and Cs₃Te₂₂ at 170–180 $^{\circ}\text{C}$.

The crystal structures§ of $C_{s_2}Te_{13}$ and $C_{s_4}Te_{28}$ provide a fascinating mechanistic insight into the formation of separated Te_8 rings and $\frac{2}{2}[Te_6^{3-}]$ sheet anions in Cs_3Te_{22} . On ignoring secondary Te…Te interactions longer than 3.17 Å in Cs_2Te_{13} , the anion structure can be described as an isolated Te_{13}^{2-} chain that is stabilised by its coordination of the caesium atom Cs(2) (Fig. 1). The largest previously known Te_n^{2-} anions were provided for n = 8 by an isolated spirobicyclic species $[Te(Te_3)(Te_4)]^{2-}$ with $[K([15]-crown-5)_2]^+$ as counter cation⁹ and by chainlike building units in the sheet anions $\frac{2}{2}[Te_4]$ of $CsTe_4$.¹⁰ Characteristic for the novel chain anion Te_{13}^{2-} with its C_s symmetry is the central Te₇ unit [atoms Te(4) to Te(4)'] that can be regarded as an incomplete crown. Bond lengths [2.755(2)–2.808(2) Å], bond angles [99.4(1)–100.4(1)°] and

Fig. 2 Structure of the sheet anion $\mathcal{Z}[Te_{13}^{2-}]$ perpendicular to [010] on inclusion of the secondary Te(1)…Te(3) interactions. Selected bond distances: Te(1)–Te(2) 2.763(2), Te(2)–Te(3) 2.896(2), Te(3)–Te(4) 2.910(2) Å.

torsion angles [108.3(1), 98.2(1)°] in the Te7 fragment are reminiscent of those observed for isolated Te₈ rings in Cs₃Te₂₂ and Cs_4Te_{28} . The Te_{13}^{2-} chains in the crystal lattice of $Cs_2Te_{13}^{2-}$ are connected into an undulating sheet through secondary Te(1)...Te(3) interactions [distances 3.181(2) and 3.261(2) Å] leading thereby to a ladder of Te4 rectangles and chair-shaped Te₆ rings (Fig. 2). Te(1) exhibits a pyramidal geometry, Te(3) a distorted square-planar geometry. The template controlled formation of separated Te₈ crowns and $\hat{\mathbb{Z}}[Te_6]$ sheets can now be readily explained on the basis of the Cs_2Te_{13} structure. Cleavage of the symmetry-related Te(3)-Te(4) bonds and addition of a Te atom to the liberated Te₇ fragment affords the isolated Te₈ rings. Rearrangement of the remaining $\frac{1}{2}$ [Te₆²⁻] chains into a thinned 4⁴ net with Te₄ and Te₁₂ squares as observed in Cs₃Te₂₂ can be achieved by cleavage of the old Te(1)-Te(2) bonds and formation of new Te(1)-Te(2) bonds between the remaining Te₄ rings of originally adjacent ladders.

A phase of the stoichiometry (Cs_2Te_{14}) proposed by Hoffmann and coworkers⁶ can indeed be synthesised in superheated methanol at a temperature elevated by 20 °C in comparison to the preparation conditions for Cs₂Te₁₃. However, whereas the isolated polytelluride Cs4Te28 does contain isolated Te₈ crowns, the formation of a $\frac{2}{\infty}$ [Te₆²⁻] sheet anion remains incomplete (Fig. 3). The discrete Te₈ rings [Te(1), Te(2)] exhibit C_4 symmetry and display molecular dimensions similar to those of the analogous crowns in Cs₃Te₂₂. When Te...Te secondary bonds longer than 3.15 Å are ignored, both Te₆²⁻⁻ chains and isolated Te4 square rings can be identified in the lattice of Cs₄Te₂₈. These molecular building units are linked through longer Te(5)...Te(6) and Te(5)...Te(7) interactions [lengths 3.153(2) and 3.194(2) Å] into a network structure ${}_{\infty}^{3}$ [Te₂₀^{4–}]. The all-*trans* configured Te₆^{2–} chains [Te(5) to Te(5)' with C_2 symmetry], which can be regarded as a fragment of the helix structure of elemental tellurium, connect the

Fig. 3 Network structure of $\frac{3}{2}[(Te_8)(Te_4)_2(Te_6^{2-})_2]$ in Cs₄Te₂₈ depicted perpendicular to [001]. Selected bond distances and angles: Te₈ ring, Te(1)–Te(2) 2.778(2), Te(1)–Te(2') 2.829(2) Å, Te(1)–Te(2)–Te(1') 100.63(7), Te(2)–Te(1)–Te(2') 97.91(6) °; Te₆²⁻ chain, Te(3)–Te(3') 2.788(3), Te(3)–Te(4) 2.774(2), Te(4)–Te(5) 2.797(2) Å.

individual sheets of Te₄ rings [Te(6), Te(7)] with C_i symmetry. A consequence of the above interpretation of the Cs_4Te_{28} structure will be a partial localisation of negative charge on the terminal atoms Te(5) of the bridging Te_6 chains. Addition of two electrons to the $3[Te_{20}^{4-}]$ unit in Cs_4Te_{28} must lead to cleavage of the Te(4)–Te(5) bonds and formation of two planar $^{2}_{\infty}[Te_{6}^{3-}]$ sheet anions (as in Cs₃Te₂₂) and a further Te₈ ring [from atoms Te(3) and Te(4)]. Extended Hückel calculations⁶ have yielded atomic charges of -1.065 for the linear Te atoms and -0.87 for the Te₄ rings in Cs₃Te₂₂. Inspection of the $\mathcal{Z}[Te_6]$ sheets in Cs₄Te₂₈ indicates that charge must have been removed mainly from the now effectively isolated Te4 rings, which exhibit Te-Te distances of 2.911(2) and 2.955(2) Å, markedly shorter than in Cs₃Te₂₂ [3.003(1) Å]. At the same time, the secondary bonds to the bridging atom Te(5) are on average 0.097 Å longer than in Cs₃Te₂₂ [3.077(1) Å]. These atoms are displaced from the plane of the Te_4 squares [Te(6)-Te(5)-Te(7)]166.57(4)°].

The present work demonstrates how controlled variation of methanolothermal reaction conditions can allow the synthesis of designed solid-state structures. It also provides a unique mechanistic insight into template directed structural preassembly in solid-state synthesis in superheated fluids.

Footnotes

 \dagger In the notation for infinite anions $\underline{x}[$] the index *n* refers to the dimensionality of the structure

‡ Cs₂CO₃ and As₂Te₃ were heated in 0.5 ml MeOH in a sealed glass tube to the required temperature. After tempering the contents were cooled to 20 °C at 1.5 °C h⁻¹. The phases were separated manually and characterised by their crystal data. Cs₂Te₁₃: Cs₂CO₃ (0.200 g), As₂Te₃ (0.296 g), T = 160 °C, 100 h; yields Cs₂Te₅ (27%), Cs₂Te₁₃ (5%). Cs₄Te₂₈: Cs₂CO₃ (0.148 g), As₂Te₃ (0.309 g), T = 180 °C, 10 h; yields Cs₂Te₅ (30%), Cs₃Te₂₂ (8%), Cs₄Te₂₈ (3%).

§ Crystal data for Cs₂Te₁₃: Siemens P4 diffractometer, Mo-Kα radiation, orthorhombic, space group *Pbcm*, a = 7.341(1), b = 13.593(3), c = 22.652(5) Å, U = 2320.2(8) Å³, F(000) = 3144, Z = 4, $D_c = 5.51$ g cm⁻³, R = 0.052 [for 1604 data with $I > 2\sigma(I)$], $wR_2 = 0.128$ for 2647 unique reflections. Absorption corrections were based on ψ -scan data (max/min transmission 0.022/0.003). The structure was solved with SHELXS and refined with SHELXL. For Cs₄Te₂₈: tetragonal, space group *P4/ncc*, a = b = 18.885(2), c = 13.517(2) Å, U = 4821(2) Å³, F(000) = 6704, Z = 4, $D_c = 5.65$ g cm⁻³, R = 0.033 [for 1148 data with $I > 2\sigma(I)$], $wR_2 = 0.074$ for 3566 unique reflections. Absorption corrections were based on ψ -scan data (max/min transmission 0.032/0.008). Diffractometer and refinement as above. Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 A. Stein, S. W. Keller and T. E. Mallouk, Science, 1993, 259, 1558.
- 2 M. G. Kanatzidis and S.-P. Huang, Coord. Chem. Rev., 1994, 130, 509.
- 3 L. C. Roof and J. W. Kolis, *Chem. Rev.*, 1993, **93**, 1037; G. W. Drake and J. W. Kolis, *Coord. Chem. Rev.*, 1994, **137**, 131.
- 4 W. S. Sheldrick and B. Schaaf, Z. Naturforsch., Teil B 1994, 49, 993.
- 5 W. S. Sheldrick and M. Wachhold, Angew. Chem., Int. Ed. Engl., 1995, 34, 450.
- 6 Q. Liu, N. Goldberg and R. Hoffmann, Chem. Eur. J., in press.
- 7 M. G. Kanatzidis, Angew. Chem., Int. Ed. Engl., 1995, 34, 2109.
- 8 P. Böttcher and U. Kretschmann, Z. Anorg. Allg. Chem., 1982, 491, 39.
- 9 B. Schreiner, K. Dehnicke, K. Maczek and D. Fenske, Z. Anorg. Allg. Chem., 1993, 619, 1414.
- 10 P. Böttcher and U. Kretschmann, Z. Anorg. Allg. Chem., 1985, 523, 145.

Received, 27th November 1995; Com. 5/07728A