Synthesis and structure of Cs₂Te₁₃ and Cs₄Te₂₈, tellurium-rich tellurides on the methanolothermal route to $Cs₃Te₂₂$

William S. Sheldrick" and Michael Wachhold

Lehrstuhl fur Analytische Chemie, Ruhr-Universitat Bochum, 0-44780 Bochum, Germany

Reaction of Cs₂CO₃ and As₂Te₃ in superheated methanol at 160 and 180 °C afford $Cs₂Te₁₃$ and $Cs₄Te₂₈$, respectively, whose anionic structures contain Te_{13}^2 ⁻ chains (Cs_2Te_{13}), Te_6^2 chains and Te_n rings ($n = 4,8$) (Cs₄Te₂₈) as building units.

Intermediate-temperature synthetic techniques including flux and solvatothermal methods have been developed in recent years to enable the incorporation of molecular building blocks such as chains X_n^{2-} and rings X_n (X = S, Se, Te) into polychalcogenides. **I-3** For instance, we have recently reported the methanolothermal preparation of $RbTe₆⁴$ and $Cs₃Te₂₂⁵$ as the first members of a new class of very tellurium-rich alkalimetal tellurides M_xTe_y with $y/x > 4$. Cs_3Te_{22} contains both isolated crown-shaped Te_8 rings and planar sheet anions† $\text{L}[Te_{6}^{3-}]$ constituted of tellurium atoms with linear and T-shaped coordination geometries. Extended Hiickel calculations on Cs_3Te_{22} by Hoffmann and coworkers⁶ demonstrated that the geometries of the anionic Te atoms are determined by their particular electron count. These authors predicted that Cs_3Te_{22} will be metallic and have suggested two structurally
related phases $[Cs(Te_8)]+[CsTe_6]^-$ or Cs_2Te_{14} , and related phases $[Cs(Te_8)]+[CsTe_6]$ ⁻ or Cs_2Te_{14} , and $[Cs(Te_8)]_3^{3+}[CsTe_6]^{3-}$ or Cs_4Te_{30} . Kanatzidis⁷ concluded that related compounds with more than one identical layer might be possible as part of a homologous family.

The presence of two such strikingly different tellurium components in $Cs₃Te₂₂$ can only be explained by assuming an alkali-metal directed template control of compound formation involving several reactions steps. We have now established that the reaction of Cs_2CO_3 with As_2Te_3 in superheated methanol, at temperatures lower than previously employed for $Cs₃Te₂₂$

Fig. 1 Coordination of Cs(2) by the Te₁₃²⁻ chain in Cs₂Te₁₃

(195 °C),⁵ leads to the formation of two related tellurium-rich tellurides with novel building units. \ddagger Cs₂Te₁₃ may be obtained together with $Cs_2Te_5^8$ at 150-160 °C, Cs_4Te_{28} together with Cs_2Te_5 and Cs_3Te_{22} at 170-180 °C.

The crystal structures § of Cs_2Te_{13} and Cs_4Te_{28} provide a fascinating mechanistic insight into the formation of separated Te₈ rings and $2[T_{e6}^{3-}]$ sheet anions in Cs₃Te₂₂. On ignoring secondary Te…Te interactions longer than 3.17 Å in Cs₂Te₁₃, the anion structure can be described as an isolated Te_{13}^2 chain that is stabilised by its coordination of the caesium atom Cs(2) (Fig. 1). The largest previously known Te_n^2 anions were provided for $n = 8$ by an isolated spirobicyclic species $[Te(Te_3)(Te_4)]^2$ with $[K([15]-crown-5)_2]^+$ as counter cation⁹ and by chainlike building units in the sheet anions $\frac{2}{3}[Te_4]$ of CsTe₄.¹⁰ Characteristic for the novel chain anion Te₁₃²⁻ with its C_s symmetry is the central Te₇ unit [atoms Te(4) to Te(4)'] that can be regarded as an incomplete crown. Bond lengths $[2.755(2) - 2.808(2)$ Å], bond angles $[99.4(1) - 100.4(1)$ ^o] and

Fig. 2 Structure of the sheet anion $\frac{2}{6}[Te_{13}^2]$ perpendicular to [010] on inclusion of the secondary Te(1)...Te(3) interactions. Selected bond **distances: Te(1)-Te(2) 2.763(2), Te(2)-Te(3) 2.896(2), Te(3)-Te(4) 2.910(2) A.**

torsion angles [108.3(1), 98.2(1)^o] in the Te₇ fragment are reminiscent of those observed for isolated Te₈ rings in $Cs₃Te₂₂$ and $Cs₄Te₂₈$. The Te₁₃²⁻ chains in the crystal lattice of $Cs₂Te₁₃$ are connected into an undulating sheet through secondary Te(1)...Te(3) interactions [distances 3.181(2) and 3.261(2) \AA] leading thereby to a ladder of Te₄ rectangles and chair-shaped Te₆ rings (Fig. 2). Te(1) exhibits a pyramidal geometry, Te(3) a distorted square-planar geometry. The template controlled formation of separated Te₈ crowns and $\frac{2}{2}[Te_6]$ sheets can now be readily explained on the basis of the $Cs₂Te₁₃$ structure. Cleavage of the symmetry-related $Te(3) - Te(4)$ bonds and addition of a Te atom to the liberated $Te₇$ fragment affords the isolated Te₈ rings. Rearrangement of the remaining $\frac{1}{6}$ [Te₆²⁻] chains into a thinned 4^4 net with Te₄ and Te₁₂ squares as observed in Cs_3Te_{22} can be achieved by cleavage of the old Te(1)-Te(2) bonds and formation of new Te(1)-Te(2) bonds between the remaining Te_4 rings of originally adjacent ladders.

A phase of the stoichiometry (Cs_2Te_{14}) proposed by Hoffmann and coworkers⁶ can indeed be synthesised in superheated methanol at a temperature elevated by 20°C in comparison to the preparation conditions for $Cs₂Te₁₃$. However, whereas the isolated polytelluride $Cs₄Te₂₈$ does contain isolated Te₈ crowns, the formation of a $\frac{2}{2}[Te_6^{2-}]$ sheet anion remains incomplete (Fig. 3). The discrete Te_8 rings $[Te(1), Te(2)]$ exhibit C_4 symmetry and display molecular dimensions similar to those of the analogous crowns in $Cs₃Te₂₂$. When $Te₁Te₄$ secondary bonds longer than 3.15 Å are ignored, both Te_6^2 chains and isolated Te_4 square rings can be identified in the lattice of $Cs₄Te₂₈$. These molecular building units are linked through longer $Te(5) \cdots Te(6)$ and $Te(5) \cdots Te(7)$ interactions [lengths $3.153(2)$ and $3.194(2)$ Å] into a network structure $\frac{3}{2}[Te_{20}^{4-}]$. The all-trans configured Te₆²⁻ chains [Te(5) to Te(5)' with C_2 symmetry], which can be regarded as a fragment of the helix structure of elemental tellurium, connect the

Fig. 3 Network structure of $\frac{3}{2}[(Te_8)(Te_4)_2(Te_6^{2-})_2]$ in Cs₄Te₂₈ depicted perpendicular to [001]. Selected bond distances and angles: Te₈ ring, Te(1)-Te(2) 2.778(2), Te(1)–Te(2′) 2.829(2) Å, Te(1)–Te(2)–Te(1′) 100.63(7),
Te(2)–Te(1)–Te(2′) 97.91(6) °; Te₆2– chain, Te(3)–Te(3′) 2.788(3), Te(3)– Te(4) 2.774(2), Te(4)-Te(5) 2.797(2) Å.

individual sheets of Te₄ rings [Te(6), Te(7)] with C_i symmetry. A consequence of the above interpretation of the $Cs₄Te₂₈$ structure will be a partial localisation of negative charge on the terminal atoms Te(5) of the bridging Te₆ chains. Addition of two electrons to the ${}_{\infty}^{3}[Te_{20}^{4-}]$ unit in $Cs_{4}Te_{28}$ must lead to cleavage of the Te(4)-Te(5) bonds and formation of two planar \approx [Te₆³⁻] sheet anions (as in Cs₃Te₂₂) and a further Te₈ ring [from atoms Te(3) and Te(4)]. Extended Hückel calculations⁶ have yielded atomic charges of -1.065 for the linear Te atoms and -0.87 for the Te₄ rings in Cs₃Te₂₂. Inspection of the $\frac{2}{9}$ [Te₆] sheets in Cs_4Te_{28} indicates that charge must have been removed mainly from the now effectively isolated Te_4 rings, which exhibit Te–Te distances of 2.911 (2) and 2.955 (2) Å, markedly shorter than in Cs_3Te_{22} [3.003(1) A]. At the same time, the secondary bonds to the bridging atom $Te(5)$ are on average 0.097 Å longer than in Cs_3Te_{22} [3.077(1) Å]. These atoms are displaced from the plane of the Te₄ squares $[\text{Te}(6)-\text{Te}(5)-\text{Te}(7)]$ $166.57(4)$ °].

The present work demonstrates how controlled variation of methanolothermal reaction conditions can allow the synthesis of designed solid-state structures. It also provides a unique mechanistic insight into template directed structural preassembly in solid-state synthesis in superheated fluids.

Footnotes

 \dagger In the notation for infinite anions $\mathcal{L}[\]$ the index *n* refers to the dimensionality of the structure

 $\text{\#} \text{Cs}_2\text{CO}_3$ and As₂Te₃ were heated in 0.5 ml MeOH in a sealed glass tube to the required temperature. After tempering the contents were cooled to 20 °C at 1.5 °C h⁻¹. The phases were separated manually and characterised by their crystal data. Cs_2Te_{13} : $Cs_2CO_3(0.200 \text{ g})$, $As_2Te_3(0.296 \text{ g})$, $T =$ 160 °C, 100 h; yields Cs₂Te₅ (27%), Cs₂Te₁₃ (5%). Cs₄Te₂₈: Cs₂CO₃ (0.148) g), As₂Te₃ (0.309 g), $T = 180$ °C, 10 h; yields Cs₂Te₅ (30%), Cs₃Te₂₂ (8%), Cs4Te28 *(3%).*

§ Crystal data for Cs₂Te₁₃: Siemens P4 diffractometer, Mo-Kα radiation, orthorhombic, space group *Pbcm*, $a = 7.341(1)$, $b = 13.593(3)$, $c =$ 22.652(5) Å, $U = 2320.2(8)$ Å³, $F(000) = 3144$, $Z = 4$, $D_c = 5.51$ g cm⁻³, $R = 0.052$ [for 1604 data with $I > 2\sigma(I)$], $wR_2 = 0.128$ for 2647 unique reflections. Absorption corrections were based on ψ -scan data (max/min transmission 0.022/0.003). The structure was solved with SHELXS and refined with SHELXL. For Cs₄Te₂₈: tetragonal, space group $P4/ncc$, $a = b$ $= 18.885(2)$, $c = 13.517(2)$ Å, $U = 4821(2)$ Å³, $F(000) = 6704$, $Z = 4$, $D_c = 5.65$ g cm⁻³, $R = 0.033$ [for 1148 data with $I > 2\sigma(I)$], $wR_2 = 0.074$ for 3566 unique reflections. Absorption corrections were based on ψ -scan data (max/min transmission 0.032/0.008). Diffractometer and refinement as above. Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. **1.**

References

- 1 A. Stein, **S.** W. Keller and T. **E.** Mallouk, *Science,* 1993, 259, 1558.
- 2 M. *G.* Kanatzidis and **S.-P.** Huang, *Coord. Chern. Rev.,* 1994, 130, 509.
- 3 L. C. Roof and J. W. Kolis, *Chem. Rev.,* 1993,93, 1037; G. W. Drake and J. W. Kolis, *Coord. Chem. Rev.,* 1994, 137, 131.
- 4 W. **S.** Sheldrick and B. Schaaf, Z. *Naturforsch., Teil B* 1994, **49,** 993.
- *5* W. **S.** Sheldrick and M. Wachhold, *Angew. Chem., Int. Ed. Engl.,* 1995, 34, 450.
- 6 Q. Liu, N. Goldberg and **R.** Hoffmann, *Chem. Eur. J.,* in press.
- 7 M. G. Kanatzidis, *Angew. Chem., Int. Ed. Engl.,* 1995, 34, 2109.
- **8** P. Bottcher and U. Kretschmann, Z. *Anorg. Allg. Chem.,* 1982, **491,** 39.
- 9 B. Schreiner, K. Dehnicke, K. Maczek and D. Fenske, Z. *Anorg. Allg. Chem.,* 1993,619, 1414.
- 10 P. Bottcher and U. Kretschmann, Z. *Anorg. Allg. Chem.,* 1985, 523, 145.

Received, 27th November *1995; Corn.* 5/07728A