A U-shaped Arrhenius behaviour for emission decay: temperature-dependent switching between excited-state decay paths

S. R. L. Fernando and Michael Y. Ogawa

Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA

Temperature variation causes a switching between excited-state decay paths to give a U-shaped Arrhenius plot.

The photophysical properties of ruthenium tris(diimine) complexes are well understood.¹ As such, they can be used to study how various environmental factors can be used to modulate photochemical processes.² It has been well established that photoexcitation of typical ruthenium polypyridyl complexes generates a singlet metal-to-ligand charge-transfer state (1MLCT) which undergoes efficient intersystem crossing to a manifold of closely spaced triplet states (³MLCT). As shown in Fig. 1, these states can then decay back to the ground state through both radiative (k_r) and non-radiative (k_{nr}) mechanisms, in addition to a thermal population of high-lying ligand field states (3LF).^{1,3} Thus, the emission lifetimes of most ruthenium tris(diimine) complexes generally decrease with increasing temperature in fluid solution. In such cases energy gaps of ΔE = 2500-4100 cm⁻¹ have been reported to separate the ³MLCT and ³LF states.⁴

In recent work, we reported strong solvatochromic behavior in the emission properties of a novel ruthenium polypyridyl complex, [Ru^{II}(bpy)₂L], where L is a non-symmetrically substituted 2,2'-bipyridyl ligand having two carboxylate groups located at one of its two pyridyl rings: L = 3,5-dicarboxy-2,2'bipyridine.⁵ When dissolved in acetonitrile, this compound behaves much like [Ru^{II}(bpy)₃], having an emission maximum at $\lambda_{em} = 637$ nm, a lifetime of $\tau = 846 \pm 11$ ns (295 K), and decay rates ($k_{obs} = 1/\tau$) that follow a thermally activated behaviour in which $E_a = +4170 \pm 200$ cm⁻¹. In contrast, when

Fig. 1 Energy-level diagram showing the excited-state processes occurring in ruthenium polypyridyl compounds. ΔE reflects the variation in emission energies that can arise in response to changes in solvent and/or temperature.

[Ru^{II}(bpy)₂L] is dissolved in water its emission spectrum becomes strongly red-shifted ($\lambda_{em} = 685$ nm at 295 K) corresponding to a solvent stabilization of its ³MLCT states by ca. 1100 cm⁻¹. The strongly red-shifted emission predicts that (i) the excited-state lifetimes in water would be very small as dictated by the energy-gap law,6 and (ii) thermal access to the deactivating ³LF would be severely diminished at ambient temperatures. The excited-state lifetimes of [Ru^{II}(bpy)₂L] in water are indeed very short ($\tau = 54 \pm 1$ ns at 280 K) and follow an unusual temperature dependence by increasing with increasing temperature throughout the accessible temperature range, to $\tau = 75 \pm 1$ ns at 360 K. The corresponding decay rates can be fit to the Arrhenius expression to give a small, negative activation energy for emission decay of $E_a = -270 \pm 15 \text{ cm}^{-1}$ (Fig. 2). These results showed that solvatochromic shifts in emission can be used to alter the emission energies of [Ru^{II}(bpy)₂L] to produce a solvent-dependent switching between different excited-state deactivation paths. In the present communication, we report that temperature variation can also be used to systematically tune the emission energies of this compound to yield a novel temperature-dependent switching between emission decay paths.

When $[Ru^{II}(bpy)_2L]$ is dissolved in methanol, an unusual temperature dependence of k_{obs} can be seen (Fig. 2). At low temperatures (≤ 305 K), the decay rates display negatively activated behaviour similar to that previously seen in water. Within this regime, the emission lifetimes increase with increasing temperature from $\tau = 187 \pm 3$ ns at 205 K to $\tau = 368 \pm 4$ ns at 305 K.

A fit of the emission decay rates to eqn. (1) yields A = 6.5

$$k_{\rm obs} = A \exp(-E_a/RT) \tag{1}$$

 \pm 0.3 \times 10⁵ s⁻¹ and $E_a = -300 \pm 15$ cm⁻¹, which is nearly identical to the activation energy reported in water. Experiments

Fig. 2 Plot of $\ln k_{obs} vs. 1/T$ taken in water and methanol. The solid lines are from fits of the data as described in the text (T = 280-360 K in water, T = 205-305 K in methanol). Error bars are smaller than the symbols.

Chem. Commun., 1996 637

performed in CD₃OD show qualitatively similar behaviour but one in which the observed activation energy is of lower magnitude, $E_a = -200 \pm 10 \text{ cm}^{-1}$. The observed solvent isotope effect suggests that specific solute-solvent interactions may play an important role in determining the mechanisms for the negative activation energy.[†] A markedly different temperature dependence of k_{obs} is seen from the data obtained at high temperatures (>305 K). Here, emission lifetimes begin to decrease with increasing temperature in a manner similar to that reported in acetonitrile. From the limited data obtained within this regime, a fit to a modified Arrhenius expression³ [eqn. (2)] yields $k_0 = 2.6 \times 10^6 \text{ s}^{-1}$, $A = 1.7 \times 10^{15} \text{ s}^{-1}$, and $E_a = +4900$ cm⁻¹.

$$k_{\rm obs} = k_0 + A \exp(-E_a/RT) \tag{2}$$

To better determine the role of temperature in governing the magnitude of k_{obs} in methanol, temperature-dependent emission spectra were obtained. At 295 K, the emission maximum occurs at $\lambda_{em} = 652$ nm, which is intermediate between the values previously observed in acetonitrile and water. However, this emission is strongly thermochromic, showing a shift to higher energies upon increasing temperatures (Fig. 3, inset). It is significant to note that the low temperature maxima ($\lambda_{em} = 668$ nm at 220 K) are similar to those previously observed in water. At high temperatures the maxima ($\lambda_{em} = 642$ nm at 328 K) are nearly identical to that seen in acetonitrile at 295 K. Thus, temperature variation has the effect of tuning the emission energies of [Ru^{II}(bpy)₂L] between the two limiting energy regimes previously reported.⁵

As shown in Fig. 2, the demarcation between the regions of normally and negatively activated behaviour occurs at 305 K. It is therefore important to characterize the nature of the excited-state decay processes that occur both above and below this temperature. The energy-gap law for radiationless transitions states that the rates of non-radiative decay (k_{nr}) should vary

Fig. 3 Plot of $\ln k_{nr} vs. E_{em}$ taken in methanol. Linear behaviour predicted by eqn. (3) is observed for T < 305 K suggesting that temperature-induced energy-gap law behaviour is obtained. Deviations from linearity occur at higher temperatures. Inset: Variation of emission energy with temperature.

exponentially with emission energy $(E_{\rm em})$ according to eqn. (3),⁶ where $k_{\rm nr} = [k_{\rm obs} - k_{\rm r}]$, $k_{\rm r} = [\phi/\tau_{\rm obs}]$, ϕ is the emission

$$\ln k_{\rm nr} = A - BE_{\rm em} \tag{3}$$

quantum yield, and A and B are constants. Thus, the thermochromic emission behaviour discussed above predicts that a linear relationship should exist between $\ln k_{nr}$ and the temperature-induced variation in E_{em} . As seen in Fig. 3, the predicted behaviour is precisely that shown for data obtained within the low-temperature regime ($T \le 305$ K). These results demonstrate that the negatively activated rates of emission decay can be explained in terms of a temperature-induced energy-gap law behaviour occurring at low temperatures. In contrast, the non-radiative decay rates obtained at higher temperatures (T > 305 K) clearly deviate from this trend. The apparent enhancement of k_{nr} over those predicted by the energygap law is consistent with a change in deactivation paths to one that involves an enhanced thermal access to the deactivating ³LF states, as determined by the temperature dependence of k_{obs} .

In summary, an unusual U-shaped Arrhenius curve has been observed for the emission decay rates of $[Ru^{II}(bpy)_2L]$. Thermochromic and temperature-induced energy-gap law data have been used to suggest that such behaviour results from a temperature-induced switching between different excited-state decay paths. These results demonstrate the importance of considering specific solvation effects in the study of unusual temperature behaviour in the excited-state lifetimes of this and related^{4,7} compounds.

The authors would like to thank Professor M. A. J. Rodgers for use of the laser flash photolysis facilities at BGSU and the National Science Foundation (CHE-9307791) for supporting portions of this work. Helpful discussions with Professor G. S. Hammond are also gratefully acknowledged.

Footnote

[†] The formation of intermolecular hydrogen bonds to solvent is known to play an important role in the emission quenching of both organic⁸ and inorganic complexes.⁹ However, to our knowledge, the thermal regulation of such interactions has not been previously reported to produce negatively activated processes.

References

- 1 For a review, see A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. Von Zelewsky, *Coord. Chem. Rev.*, 1988, **84**, 85.
- 2 H. Sun and M. Z. Hoffman, J. Phys. Chem., 1993, 97, 11956.
- 3 J. Van Houten and R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853.
- 4 R. S. Lumpkin, E. M. Kober, L. A. Worl, Z. Murtaza and T. J. Meyer, *J. Phys. Chem.*, 1990, **94**, 239.
- 5 S. R. L. Fernando, U. S. M. Maharoof, K. D. Deshayes, T. H. Kinstle and M. Y. Ogawa, J. Am. Chem. Soc., submitted; S. R. L. Fernando and M. Y. Ogawa, Abstracts of papers, 210th National Meeting of the American Chemical Society, ACS, Washingon DC, 1995.
- 6 J. V. Caspar, B. P. Sullivan, E. M. Kober and T. J. Meyer, *Chem. Phys. Lett.*, 1982, **91**, 91.
- 7 L. Wallace, D. C. Jackman, D. P. Rillema and J. W. Merkert, *Inorg. Chem.*, 1995, **34**, 5210.
- 8 C. V. Kumar and L. M. Tolosa, J. Photochem Photobiol. A, 1994, 78, 63.
- 9 C. Turro, S. H. Bossmann, Y. Jenkins, J. K. Barton and N. J. Turro, J. Am. Chem. Soc., 1995, 117, 9026.

Received, 13th December 1995; Com. 5/08130K