Synthesis of functional polyimide beads and use as MoVI epoxidation catalyst supports

Jou-Hyeon Ahn^a and David C. Sherrington^{*b}

a Department of Chemical Engineering, Gyeongsang National University, 900 Kajwa-dong, Chinju, Gyeongnam 660-701, Korea Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK GI IXL

Functional spherical particulate polyimide supports are prepared by a non-aqueous suspension of polycondensation methodology, and one species bearing a triazole residue is used to immobilise a stable and active MoVI alkene epoxidation catalyst.

Aromatic polyimides probably find the widest range of application among the thermally stable synthetic polymers, and are generally prepared by a two-step procedure¹ from readily available dianhydride and diamine starting materials of low to moderate cost. Formation of poly(amide-acid) solutions, prior to imidisation, provides a very convenient technology for applications as adhesives, sealants and coatings.2 For application as thermo-oxidatively stable polymer supports, $3,4$ however, porous particulate species are required, and we have already reported the synthesis of such materials using relatively mild and easily reproducible procedures.5.6 Unfortunately, unlike polybenzimidazoles, which are equally thermo-oxidatively stable, simple aromatic polyimides contain no readily exploitable reactive groups, and certainly no inherent donor groups

Scheme 1 Schematic Synthesis of Functional Polyimides

which might act as ligands. They are however much easier to synthesise than spherical particulate polybenzimidazoles⁷ and potentially of much lower cost. We have already reported the remarkable performance of a polybenzimidazole-supported Mo^{VI} catalyst in the epoxidation of propane,⁸ and we now report the first synthesis of functional spherical polyimides and their use as supports for Mo^{VI} catalysts in cyclohexene epoxidation.

The suspension polycondensation procedure adopted has already been reported.^{5,6} In this instance the pre-polymer poly(amide-acid) solution in dimethylacetamide-LiC1 or *N*methylpyrrolidone-LiC1 was prepared from pyromellitic dianhydride and the functional diamines 3,5-diamino- 1,2,4 triazole (DAT); 2,5-diaminobenzoic acid (DAB); 2,5-diaminobenzene sulfonic acid (DAS) or 2,6-diaminopyridine (DAP). Each pre-polymer solution was then dispersed as droplets in liquid paraffin containing poly(ma1eic anhydride-co-octadecl-ene) (1 : 1) as a suspension stabiliser, and imidisation induced at 60°C by addition of a mixture of acetic anhydride and pyridine (Scheme **1).** For comparison a non-functional polyimide (PI) was prepared using p-phenylene diamine (PDA) and a crosslinked analogue of this (CPI) also produced by inclusion

Fig. 1 Optical Photograph of PI-DAS beads (ca. 50-500 µm diameter)

Table 1 Elemental microanalytical and particle size distribution data of polyimide particulates

Code	Elemental content											
	Calculated $(\%)$			Found $(\%)$			Particle size fraction (mass%) ^a					
	C	Н	N	C	Н	N	А	B	C	D	Е	F
PI	66.2	2.1	9.7	64.7	3.1	9.0	7.7	2.3	7.1	38.2	44.7	0
CPI^b	64.2	2.6	10.9	62.2	3.2	10.0	0	28.1	25.3	30.7	12.4	3.5
PI-DAT	58.9	1.6	17.2	45.8	2.9	12.6		3.0	5.6	34.8	41.4	15.2
PI-DAB	61.1	1.8	8.4	58.2	3.3	8.9	0	7.4	20.0	33.4	39.2	0
PI-DAS	51.9	1.6	7.5	52.5	3.2	8.1	0	1.5	2.3	3.8	16.0	76.4
PI-DAP	61.9	1.7	14.4	49.7	3.6	9.8	2.4	10.8	7.0	6.9	22.3	50.6

*^a***A;** < 38 pm, B; 38-75 pm, **C;** 75-105 **pm, D;** 106-212 **pm, E;** 212425 **pm,** F; > 425 **pm.** *b* **Crosslinked** P1.

of tris(2-aminoethy1)amine (TAA) at a level too low to induced gelling of the pre-polymer. In each case polycondensations were carried out on a **10** or 20 g scale. Most rewardingly none of the functional groups exploited were found to interfere with the polyimide syntheses, and typically 90-100% of mainly spherical polyimide products were recovered after washing and drying5.6 (Fig. **1).** Table **1** shows the results of elemental microanalyses, and the particle size fractionations. Effective

Fig. 2 Thermogravimetric analysis (TGA) curves of **functional polyimide beads**

Fig. 3 Recycling of PI-DATMo catalyst in the epoxidation of **cyclohexene with tBHP (yield at 120 min)**

combustion analysis of polyimides can be problematical because of their high oxidation stability. In the case of PI-DAT and PI-DAP, the N content found is apparently lower than expected. Additionally the H content of all species is rather high, probably reflecting trapping of solvent, fragments from the dehydrating agents and moisture. The FTIR spectrum of the triazole-containing polyimide (PI-DAT) is exemplary of all the spectra obtained (1780, 1720 cm⁻¹, heterocyclic carbonyl; 1348 m⁻¹, C-N stretch; 720 cm⁻¹ imide ring deformation). The thermo-gravimetric analysis (TGA) curves for the particulate polyimides are shown in Fig. 2. The loss of material below **ca. 300 "C** almost certainly corresponds to the physically trapped components mentioned above. Serious degradation of all the functional polyimides in oxygen does not take-off until *ca.* **400°C.** All the materials therefore show good prospects for high temperature application as supports, certainly in reactions up to 300° C.

Polyimide PI-DAT was loaded with Mo^{VI} by prolonged refluxing in an ethanol solution of $MoO₂(acac)₂$, followed by exhaustive extraction in a Soxhlet. Atomic absorption spectrophotometric analysis indicated a loading of Mo of **2.1** mmol g^{-1} . The PI-DAT Mo complex was employed as a heterogeneous catalyst in the epoxidation of cyclohexene using tert-butylhydroperoxide (tBHP), as the oxidant. The conditions were as previously reported8 [0.08 g polymer catalyst, **7.5** ml **(74** mmol) cyclohexene, **2** ml (5 mmol) anhydrous tBHP, 60 **"C].** The data in Fig. 3 show the yield of cyclohexene oxide (based on 5 mmol t BHP = 100%) after 120 min, with the same sample of catalyst recycled **10** times. Although we have previously seen retention of high activity in a polybenzimidazole-supported **MoVI** species in the epoxidation of propene,* the latter catalyst displayed rather rapid deactivation on recycling in cyclohexene epoxidation.9 The reported retention of activity by PI-DAT*Mo in cyclohexene epoxidation is therefore most encouraging, and suggests that catalysts based on functional polyimide particulates might form the basis of a range of stable polymer-supported metal complex catalysts, where the support is readily synthesised and is highly costeffective. Application on both a laboratory and a technical scale also seem feasible.

J. H. Ahn acknowledges a post-doctoral fellowship from the Korea Science and Engineering Foundation (KOSEF).

References

- **¹**D. **Wilson, H.** D. **Stenzenberger and P. M. Hergenrother,** *Polyimides,* **Chapman and Hall, New York, 1990.**
- **2** L. H. **Lee,** *Adhesives, Sealants and Coatings for Space and Harsh Environments, Polymer Science and Technology,* **Plenem, New York, 1988.**
- *3 Syntheses and Separations Using Functional Polymers,* **ed.** D. **C. Sherrington and P. Hodge, John Wiley** & **Sons, Chichester, 1988.**
- **4 F. R. Hartley,** *Supported Metal Complexes,* **Reidal, Dordrecht, 1985.**
- *5* T. **Brock and** D. **C. Sherrington,** *Polymer,* **1992,33, 1773.**
- **6** T. **Brock and** D. **C. Sherrington,** *J. Muter. Chem.,* **1991, 1, 151.**
- **7 T. Brock,** D. **C. Shemngton and J. Swindell,** *J. Muter. Chem.,* **1994, 4, 229.**
- **8 M. M. Miller and** D. **C. Sherrington,** *J. Chem. SOC., Perkin Trans.* **2,1994, 2019.**
- **9 M. M. Miller and** D. **C. Sherrington,** *J. Catal.,* **1995, 152,** *377.*

Received, 23rd November *1995; Corn. 51076.586*