Synthesis of functional polyimide beads and use as Mo^{VI} epoxidation catalyst supports

Jou-Hyeon Ahn^a and David C. Sherrington*^b

^a Department of Chemical Engineering, Gyeongsang National University, 900 Kajwa-dong, Chinju, Gyeongnam 660-701, Korea ^b Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK G1 1XL

Functional spherical particulate polyimide supports are prepared by a non-aqueous suspension of polycondensation methodology, and one species bearing a triazole residue is used to immobilise a stable and active Mo^{VI} alkene epoxidation catalyst.

Aromatic polyimides probably find the widest range of application among the thermally stable synthetic polymers, and are generally prepared by a two-step procedure¹ from readily available dianhydride and diamine starting materials of low to moderate cost. Formation of poly(amide-acid) solutions, prior to imidisation, provides a very convenient technology for applications as adhesives, sealants and coatings.² For application as thermo-oxidatively stable polymer supports,^{3,4} however, porous particulate species are required, and we have already reported the synthesis of such materials using relatively mild and easily reproducible procedures.^{5,6} Unfortunately, unlike polybenzimidazoles, which are equally thermo-oxidatively stable, simple aromatic polyimides contain no readily exploitable reactive groups, and certainly no inherent donor groups

Scheme 1 Schematic Synthesis of Functional Polyimides

Elemental content

which might act as ligands. They are however much easier to synthesise than spherical particulate polybenzimidazoles⁷ and potentially of much lower cost. We have already reported the remarkable performance of a polybenzimidazole-supported Mo^{VI} catalyst in the epoxidation of propane,⁸ and we now report the first synthesis of functional spherical polyimides and their use as supports for Mo^{VI} catalysts in cyclohexene epoxidation.

The suspension polycondensation procedure adopted has already been reported.^{5,6} In this instance the pre-polymer poly(amide-acid) solution in dimethylacetamide–LiCl or *N*methylpyrrolidone–LiCl was prepared from pyromellitic dianhydride and the functional diamines 3,5-diamino-1,2,4triazole (DAT); 2,5-diaminobenzoic acid (DAB); 2,5-diaminobenzene sulfonic acid (DAS) or 2,6-diaminopyridine (DAP). Each pre-polymer solution was then dispersed as droplets in liquid paraffin containing poly(maleic anhydride-co-octadec-1-ene) (1:1) as a suspension stabiliser, and imidisation induced at 60 °C by addition of a mixture of acetic anhydride and pyridine (Scheme 1). For comparison a non-functional polyimide (PI) was prepared using *p*-phenylene diamine (PDA) and a crosslinked analogue of this (CPI) also produced by inclusion

Fig. 1 Optical Photograph of PI-DAS beads (ca. 50-500 µm diameter)

 Table 1 Elemental microanalytical and particle size distribution data of polyimide particulates

Code	Elemental content												
	Calculated (%)			Found (%)			Particle size fraction (mass%) ^a						
	С	Н	N	С	Н	N	A	В	С	D	E	F	
PI	66.2	2.1	9.7	64.7	3.1	9.0	7.7	2.3	7.1	38.2	44.7	0	
CPI ^{<i>b</i>}	64.2	2.6	10.9	62.2	3.2	10.0	0	28.1	25.3	30.7	12.4	3.5	
PI-DAT	58.9	1.6	17.2	45.8	2.9	12.6	0	3.0	5.6	34.8	41.4	15.2	
PI-DAB	61.1	1.8	8.4	58.2	3.3	8.9	0	7.4	20.0	33.4	39.2	0	
PI-DAS	51.9	1.6	7.5	52.5	3.2	8.1	0	1.5	2.3	3.8	16.0	76.4	
PI-DAP	61.9	1.7	14.4	49.7	3.6	9.8	2.4	10.8	7.0	6.9	22.3	50.6	

^a A; < 38 μm, B; 38–75 μm, C; 75–105 μm, D; 106–212 μm, E; 212–425 μm, F; > 425 μm. ^b Crosslinked P1.

of tris(2-aminoethyl)amine (TAA) at a level too low to induced gelling of the pre-polymer. In each case polycondensations were carried out on a 10 or 20 g scale. Most rewardingly none of the functional groups exploited were found to interfere with the polyimide syntheses, and typically 90-100% of mainly spherical polyimide products were recovered after washing and drying^{5,6} (Fig. 1). Table 1 shows the results of elemental microanalyses, and the particle size fractionations. Effective

Fig. 2 Thermogravimetric analysis (TGA) curves of functional polyimide beads

Fig. 3 Recycling of PI-DAT'Mo catalyst in the epoxidation of cyclohexene with tBHP (yield at 120 min)

combustion analysis of polyimides can be problematical because of their high oxidation stability. In the case of PI-DAT and PI-DAP, the N content found is apparently lower than expected. Additionally the H content of all species is rather high, probably reflecting trapping of solvent, fragments from the dehydrating agents and moisture. The FTIR spectrum of the triazole-containing polyimide (PI-DAT) is exemplary of all the spectra obtained (1780, 1720 cm^{-1} , heterocyclic carbonyl; 1348 m⁻¹, C–N stretch; 720 cm⁻¹ imide ring deformation). The thermo-gravimetric analysis (TGA) curves for the particulate polyimides are shown in Fig. 2. The loss of material below ca. 300 °C almost certainly corresponds to the physically trapped components mentioned above. Serious degradation of all the functional polyimides in oxygen does not take-off until ca. 400 °C. All the materials therefore show good prospects for high temperature application as supports, certainly in reactions up to 300 °C.

Polyimide PI-DAT was loaded with MoVI by prolonged refluxing in an ethanol solution of $MoO_2(acac)_2$, followed by exhaustive extraction in a Soxhlet. Atomic absorption spectrophotometric analysis indicated a loading of Mo of 2.1 mmol g^{-1} . The PI-DAT Mo complex was employed as a heterogeneous catalyst in the epoxidation of cyclohexene using tert-butylhydroperoxide (tBHP), as the oxidant. The conditions were as previously reported⁸ [0.08 g polymer catalyst, 7.5 ml (74 mmol) cyclohexene, 2 ml (5 mmol) anhydrous tBHP, 60 °C]. The data in Fig. 3 show the yield of cyclohexene oxide (based on 5 mmol *t*BHP = 100%) after 120 min, with the same sample of catalyst recycled 10 times. Although we have previously seen retention of high activity in a polybenzimidazole-supported MoVI species in the epoxidation of propene,⁸ the latter catalyst displayed rather rapid deactivation on recycling in cyclohexene epoxidation.9 The reported retention of activity by PI-DAT-Mo in cyclohexene epoxidation is therefore most encouraging, and suggests that catalysts based on functional polyimide particulates might form the basis of a range of stable polymer-supported metal complex catalysts, where the support is readily synthesised and is highly costeffective. Application on both a laboratory and a technical scale also seem feasible.

J. H. Ahn acknowledges a post-doctoral fellowship from the Korea Science and Engineering Foundation (KOSEF).

References

- 1 D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Polyimides, Chapman and Hall, New York, 1990.
- 2 L. H. Lee, Adhesives, Sealants and Coatings for Space and Harsh Environments, Polymer Science and Technology, Plenem, New York, 1988
- Syntheses and Separations Using Functional Polymers, ed. D. C. 3 Sherrington and P. Hodge, John Wiley & Sons, Chichester, 1988.
- F. R. Hartley, Supported Metal Complexes, Reidal, Dordrecht, 1985.
- T. Brock and D. C. Sherrington, Polymer, 1992, 33, 1773 6
- T. Brock and D. C. Sherrington, J. Mater. Chem., 1991, 1, 151.
- T. Brock, D. C. Sherrington and J. Swindell, J. Mater. Chem., 1994, 4, 7 229.
- 8 M. M. Miller and D. C. Sherrington, J. Chem. Soc., Perkin Trans. 2, 1994, 2019
- 9 M. M. Miller and D. C. Sherrington, J. Catal., 1995, 152, 377.

Received, 23rd November 1995; Com. 5/07658G