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The synthesis of acylsilanes 3 from vinyldisilanes 1 by 
epoxidation and treatment of the resulting epoxydisilanes 
2 with H2S04 in MeOH is described. 

We recently reported a one step method for the preparation of 
vinyldisilanes 1 from aldehydes (Scheme 1).l The potential of 
vinyldisilanes 1 in organic synthesis is largely unexplored, 
unlike vinylsilanes which have established utility.2 One im- 
portant transformation of vinylsilanes is epoxidation and 
hydrolysis of the resultant epoxysilanes with acid to reveal a 
carbonyl group, in which the carbonyl carbon originally bore 
the silyl group.3 Since vinylsilanes can be prepared in one step 
by one-carbon homologation of aldehydes4 and epoxysilanes 
can be prepared directly from aldehydes or ketones by a version 
of the Darzens reaction,36 then significant methodology for 
achieving overall carbonyl chain extension is also available. As 
part of an investigation into the synthetic utility of vinyldisi- 
lanes 1, we communicate here our preliminary results concern- 
ing the reaction of acids with the easily derived epoxydisilanes 
2, which provide new routes to synthetically valuable acyl- 
silanes 35 (Scheme 1) and 1-halo- 1-trimethylsilylalkenes 6 (X = 
C1, Br or I).6 

A number of experimental conditions known to hydrolyse 
epoxides3 were examined for their ability to convert epoxy- 
disilane 2 [R = cyclohexyl (cy)] into the corresponding 
acylsilane 3 (R = cy). H2S04 in MeOH3" was found to be the 
most effective combination to achieve this transformation to 
give the acylsilane 3 (R = C Y ) ~  directly (77%)$ (Scheme 1). 
These conditions were then applied to a range of epoxydisilanes 
2 (Table 1).$ 

When following the formation of the acylsilane 3 (R = cy) by 
*H NMR, the enol ether 4 (R = cy), but not the dimethyl acetal 
5 (R = cy), could be detected (Scheme 2). The acylsilane 3 (R 
= cy) could also be obtained under the reaction conditions 
when starting from either the enol ether 4 (R = cy, E : Z,50 : 50) 
[75%, prepared (68%) from acylsilane 3 (R = cy), (Me0)3CH, 
cat. PTSA, MeOH], or the dimethyl acetal 5 (R = cy) [54%, 
prepared8 (57%) from acylsilane 3 (R = cy), MeOSiMe3, cat. 
Me3SiOTf, CH2C121, the latter reaction proceeding via rapid 
formation (by 1H NMR) of the enol ether 4 (R = cy). 

The above observations, when taken in isolation, do not rule 
out other potentially competing acid-catalysed pathways. These 
could start with regioisomeric addition of MeOH to the 
epoxydisilane 2 (R = cy), initial addition by the small amount 
of water (or HS04-) present, or direct protodesilylation [to first 
give the enol of the acylsilane 3 (R = cy)]. However, we have 
additional results which support MeOH addition to the 
epoxydisilanes 2 as the predominant reaction and that this is 
highly regioselective for the disilyl-substituted carbon. X-Ray 
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Scheme 1 Reagents and conditions: i, BrzC(SiMe&. CrC12, DMF, 25 "C, 
24 h; ii, MCPBA (1 .1  equiv.), CHzClz, 25 "C, 2-24 h; iii, c. H2S04 (1.1 
equiv.), MeOH, 25 "C, 0.7-3 h 
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crystallographic analysis of an epoxydisilane 2 (R = 3,5-di- 
nitrobenzoyloxymethyl), prepared from 3,3-bis(trimethyl- 
silyl)prop-2-enol,9 indicates a significantly longer, and there- 
fore presumably weaker, epoxide O-C(SiMe3)2 bond (1.53 A) 
compared with the epoxide O-CH(alky1) bond (1.43 A).lo Also, 
treatment of epoxydisilanes 2 (R = cy or octyl) with hydrogen 
halides results in the direct formation of (2)- 1 -halo-trimethyl- 
silylalkenes 66 (R = cy or octyl, Scheme 3), which are useful 
for the synthesis of geometrically defined trisubstituted 
alkenes.' 

Acylsilanes 3 (R = cy or octyl), which would be the expected 
products arising from the alternative regiochemistry of epoxide 
opening with hydrogen halides, were not observed in the crude 
lH NMR spectra of these reactions. 

Table 1 Synthesis of acylsilanes 3 
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R+SiMe3 - - -fSiMe3 
SiMe3 x 
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99%, EZ, 1 :99 (R = CY, X = CI) 
99%, EZ, 1199 (R = octyl, X = CI) 
99%, EZ, 4 :>99 (R = cy, X = Br) 
99%, EZ, 1 :99 (R = octyl, X = Br) 
91%, EZ, <1:>99 (R = CY, X = I) 
90%, EZ, 2:98 (R = octyl, X = I )  

Scheme 3 Reagents and conditions: i, HX, THF, reflux, 4.5-15 h 

In summary, we have developed a method for the conversion 
of epoxydisilanes 2 to synthetically valuable5 acylsilanes 3. 
This means that vinyldisilanes 1 can be regarded as masked 
acylsilanes 3. Because of the high chemoselectivity available in 
our preparation of vinyldisilanes 1 from aldehydes1 and the 
subsequent chemistry outlined herein, then overall our method- 
ology allows for one-carbon homologation of aldehydes to 
functionalised acylsilanes 3. 
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Footnotes 
t Address for correspondence. 
4 Isolated total yields of chromatographically homogeneous, spectro- 
scopically pure products are reported. All new compounds were charac- 
terised by a full range of spectroscopic data, including lH and 13C NMR and 
microanalysis and/or high resolution mass spectrometry. 
8 Representative Procedure. Concentrated H2SO4 (1 8 mol dm-3; 34 mm3, 
0.38 mmol) was added dropwise to a stirred solution of epoxydisilane 2 (R 
= Bn) (94 mg, 0.34 mmol) in MeOH (1 cm3) at 25 "C. After 2 h at 25 "C, 

saturated aqueous NaHC03 (5 cm3) was added to the reaction mixture and 
the MeOH was removed by evaporation under reduced pressure. The 
aqueous phase was extracted with Et2O (3 X 5 cm3) and the combined 
organic extracts were washed with water (10 cm3), brine (10 cm3), dried 
(MgS04) and evaporated under reduced pressure. Purification of the residue 
by column chromatography [SO2, 5% Et2O in light petroleum (boiling 
range 40-60 "C)] gave a colourless oil, the acylsilane 3 (R = Bn)7 (65 mg, 
93%).$ 
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