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ci~-[Ru(drnpe)~H~] reacts at -78 "C with 
hexafluorobenzene to generate the pentafluorophenyl 
hydride complex, trans-[R~(dmpe)~(c,&)H]; reaction also 
takes place with C6F5H, C6F5CF3, C&50CH3, 
1,2,3,4-C6F4H2 and 1,2,3-C6F& to yield products from 
C-F insertion exclusively. 

Nucleophilic attack of metal carbonyl anions on fluoroaromatic 
C-F bonds was demonstrated over 20 years ago.1 These 
reactions occur over many hours at reflux temperatures. Much 
more recently, C-F activation at electron-rich metal centres has 
been demonstrated under milder conditions.2 Aizenberg and 
Milstein have taken a further step and rendered these processes 
catalytic with the aid of coordinatively unsaturated rhodium 
complexes.3 We have reported photochemical C-F activation 
reactions of hexafluorobenzene at half-sandwich complexes of 
rhodium and i r id i~ rn .~  For [Rh( q5-C5Me5)(PMe3)(C2H4)], the 
reaction followed an analogous pathway to that established for 
C-H activation of C6H6: formation of an isolable (q2-C6F6) 
complex followed by the appearance of [Rh(q5-C5Me5)(P- 
Me3)(C6F5)F]. We were puzzled to find that photolysis of 
[Ir(q5-CSHS)(PMe3)H2] yielded instead the pentafluorophenyl 
hydride complex [Ir(qS-C,H,)(PMe3)(c6F5)H]. Another dihy- 
dride complex known for its photochemical C-H activation 
behaviour is cis-[Ru(dmpe)2H2] 1 (dmpe = Me2PCH2- 
CH2PMe2). Its photoreactions proceed via [Ru(dmpe)2] and 
yield cis-products: ~is-[Ru(dmpe)~(R)H].S We now report (i) 
that cis-[Ru(dmpe)2H2] activates C6F6, (ii) that the reaction 
proceeds without photoinitiation well below room temperature, 
(iii) that it yields a product with the alternative trans 
stereochemistry in which one hydride ligand is retained and (iv) 
that reactions with partially fluorinated arenes yield products 
from C-F activation only. 

Condensation of a twofold excess of hexafluorobenzene into 
a thf solution of 1 resulted in an immediate reaction upon 
thawing the solution to -78°C. A slight yellowing of the 
colourless solution was observed along with the precipitation of 
a small amount of white solid. 'H, 31P(1H} and 19F NMR 
spectra of the soluble fraction in [2H,]thf established the 
formation of the pentafluorophenyl hydride complex, trans- 
[Ru(dmpe)2(C6FS)Hl 2 [eqn. (111. 

C6F69 thf 
-78"C, --HF 

cis- [Ru(dmpe)2H2] - trans-[Ru(dmpe)2(C6F5)H] 
(1)  

2 1 

The 31P{ 'H} NMR spectrum of 2 displayed a triplet 
resonance at 6 47 (J 11.7 Hz) for four equivalent phosphorus 
nuclei coupled to two fluorine nuclei. The 19F NMR spectrum 
showed the expected three resonances.? The reaction of C& 
with ~is-[Ru(dmpe)~D2] yielded trans-[Ru(dmpe)2(C6F5)D]. A 
suitable single crystal of complex 2 was obtained by slow 
evaporation of a thf solution and its structure determined by X- 
ray crystallography (Fig. 1). The X-ray structure of 2 showed 
the expected trans disposition of the hydride and C6F5 group: 
the plane of the C6F5 group bisects the C-C bonds of the dmpe 
backbone. The hydride was located on a difference map.$ 

[ R ~ ( d m p e ) ~ H ~ ]  also underwent C-F activation reactions with 
partially fluorinated arenes to yield trans-fluoroaryl hydride 
complexes (Scheme 1).$ C&H reacted under similar condi- 
tions to c6F6 yielding exclusively truns-[Ru(dmpe)2@- 
C6F4H)H.t Activation of 1,2,3,4-C6F4H2 and 1,2,3-C&H3 
proceeded more slowly, the latter requiring days at room 
temperature to go to completion.1 Neither 1,3,5-trifluoroben- 
zene nor 1,2-difluorobenzene reacted. In no case was there any 
evidence for aromatic C-H bond activation. 

We have considered three mechanisms for these C-F 
insertion reactions: nucleophilic attack, concerted oxidative 
addition and electron transfer. A nucleophilic substitution 
mechanism is excluded by the very mild conditions and the lack 
of nucleophilicity of [R~(dmpe)~H~] .  The mechanism cannot 
involve oxidative addition to [Ru(dmpe)2], since this type of 
reaction yields cis-products, cis-[Ru(dmpe)2(R)H].5 Moreover, 
the thermal generation of [R~(dmpe)~] from [Ru(dmpe)2- 
(naphthyl)HI6 at 70°C in neat C6F6 did not yield the 
pentafluorophenyl hydride complex 2. Additionally, we would 
expect selectivity for C-H bonds in partially fluorinated arenes 
as was observed in the photoreactions of Rh(q5-CSRs) com- 
plexes? 

Fig. 1 ORTEP view of the molecular structure of 2. The ellipsoids are 
shown at the 50% level. Selected bond lengths (A) and angles (O): Ru-C( 1) 
2.250(4), mean Ru-P 2.3082(5), mean C( 1)-Ru-P 96.34(7), P( 1 )-Ru-P(2) 
83.89(5), P(4)-Ru-P(1) 94.60(5), RU-H 1.56. 
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An electron-transfer process involving a caged radical pair 
(Scheme 2) is consistent with the evidence. The proposed 
mechanism involves initial electron transfer from the electron- 
rich metal dihydride complex to C6F6, which has a positive 
electron affinity.8 

The resulting radical anion is known to lose F- readily.9 The 
17-electron species [Ru(dmpe)2H2]-+ is expected to be more 
acidic than the neutral 18-electron precursor. lo Overall, HF is 
lost, acting as a thermodynamic sink. Radical recombination 
within the solvent cage yields [Ru(dmpe)z(C6F~)H]. The 
reaction proceeds less readily as the arene becomes less 
fluorinated and its electron affinity decreases. The less electron- 
rich complex, [ R ~ ( d p p e ) ~ H ~ ]  (dppe = Ph2PCH2CH2PPh2), 
exhibited no reaction with C6F6, even after days at room 
temperature. The para stereoselectivity in the reaction with 
C&H can be explained, since the SOMO of C&H*- has high 
electron density at the fluorine in the 4-position.'' When the 
reaction with hexafluorobenzene was conducted in the presence 
of a radical trap, 9,10-dihydroanthracene, only trace quantities 
of anthracene were detected by GC-MS and neither the rate nor 
the yield of 2 was affected, demonstrating that all of the 
chemistry does indeed occur in the cage. Electron-transfer 
reactions of this type have been postulated previously by 
Milstein and coworkers12 but the current reactions allow clear 
distinction from a conventional oxidative addition mechanism 
on grounds of rate, selectivity and stereochemistry. 
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Scheme 1 Reaction of cis-[Ru(dmpe)2H2] 1 with fluoroarenes 

Footnotes 
t Spectroscopic data: for 2. NMR (300 MHz, [2H8]thf, 298 K): IH, 6 

1.54 (s, 12H, 4 X PCH3), 1.69 (m, 4H, 4 X PCHH), 2.21 (m, 4H, 4 x 
PCHH); 3lP('H), 6 47.3 (t, JFp 11.7 Hz); 19F, 6 -92.5 (m, 2F, ortho), 
-163.9 (m, 2F,  meta), -165.9 (t,JFl;. 21.0 Hz, lF,para). IR (Nujol): 1834 
cm-1 v(Ru-H). EIMS, mlz 569 (M+ - H), 402 (M+ - C6F5H). Satisfactory 
elemental analysis (C, H) was obtained. For trans-[Ru(dmpe)2(p-C,F4H)H] 
I300 MHz, [2H8]thf, 298 K): 'H, 6 -14.95 (t qnt, JHF 12.0, JHp 22.8 Hz, 

J F ~  11.7 Hz); l9F, 6 -97.1 (m, 2F, ortho), -144.1 (m, 2F, meta). 
$ Crystal data for trans-[Ru(dmpe)2(C~F~)H] 2: 0.8 X 0.7 X 0.5 mm, 
C18H33F5P4Ru, M = 569.39, monoclinic, space group P2&, a = 9.064(3), 
b = 14.425(3), c = 19.288(3) 8, f3 = 102.97(2)", U = 2457.4(9) A3, 

F(000) = 1160, D, = 1.539 Mg m-3, Z = 4, h(Mo-Ka) = 0.71070 A, 
p = 0.938mm-1, R1[Z > 20(Z)] = 0.037, wR2 = 0.09,GOF = 1.091,T = 
293 K, 4329 unique reflections out of 4824 measured. Data were collected 
on a Rigaku AFC6S diffractometer for 5 < 20 < 50"; the structure was 
solved by direct methods. Full-matrix least-squares refinement was canied 
out using SHELXL93. All hydrogen atoms were refined with the 'Riding' 
model. All crystallographic calculations were performed using the TEX- 
S A N  software package.13 Atomic coordinates, bond lengths and angles, and 
thermal parameters have been deposited at the Cambridge Crystallographic 
Data Centre (CCDC). See Information for Authors, Issue No. 1 .  Any request 
to the CCDC for this material should quote the full literature citation and the 
reference number 182/7. 
0 With all of the fluorinated arenes, a second product was also observed in 
the IH NMR spectrum which displayed a hydride resonance at 6 -25 and 
a broad singlet at 6 13.5. Evidence that this product is a bifluoride hydride 
complex, trans-[Ru(dmpe)2(HF2)H], will be presented elsewhere. Forma- 
tion of this species can be suppressed if the reaction is performed in the 
presence of excess NEt3. The formation of a precipitate is unique to the C6F6 
reaction. With a 1 : 1 ratio of 1 : C6F6, no white precipitate was observed, but 
a large excess of hexafluorobenzene yielded this precipitate in larger 
quantities. This product did not contain any fluoroaromatic group; its full 
characterization is in progress. 
7 Examination of the volatile products by GC-MS showed that reaction with 

[ R ~ ( d m p e ) ~ D ~ ]  with c& yielded C&D. The reaction of 1 with C6F6 was 
followed quantitatively by NMR. The ratio of C&H: 2 was 1 : 6 and found 
to be independent of the ratio of C6F6: 1. 

-15.01 (tqnt),JHFI1.5,JHP22.OHZ, IH,RU-H), 1.36(~,  12H,4X PCH3), 

lH, RU-H), 6.46 (tt, JHF 8.7, Jm 5.4 Hz, lH, C ~ F , H ) ;  3'P( 'HI, 6 47.8 (t, 

C6F,& - (n = 6,5,4,3) yielded some C6Fn - I H ~  - n. Reaction of 
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