Tricyanoquinodimethane derivatives with extremely large second-order optical nonlinearities

Peter Boldt,*^a Grant Bourhill,^b Christoph Bräuchle,^b Yiwen Jim,^b Rainer Kammler,^b Christian Müller,^b Jens Rase^a and Jürgen Wichern^a

^a Institut für Organische Chemie, Technische Universität, D-38092 Braunschweig, Germany

^b Institut für Physikalische Chemie, LMU, Sophienstrasse 11, 80333 München, Germany

Chromophores containing the tricyanoquinodimethane acceptor moiety possess substantially larger second-order optical nonlinearities than, and similar thermal stabilities to, analogous chromophores bearing the strong tricyanovinyl acceptor.

Organic chromophores displaying both large second-order optical nonlinearities and thermal stabilities are required for optical data transmission, manipulation and storage.¹ Given the prerequisite of macroscopic and molecular asymmetry for dipolar second-order nonlinear optical (NLO) effects, such as the linear electro-optic (EO) effect, prototypical devices have been doped polymers containing dipolar chromophores of the form D- π -A, where D (A) is an electron donor (acceptor) group and π is a π -electron-conjugated bridge linking D/A moieties. Macroscopic asymmetry is normally induced via thermopoling² the dipolar molecules at the polymer glass transition temperature, T_g . To minimize the subsequent dipolar relaxation and the decrease in second-order NLO properties after removal of the thermo-poling field, polymers with $T_g > 180 \,^{\circ}\text{C}$ are normally used, requiring dyes with sufficient thermal stability. For doped polymers, it is acknowledged that for some applications, EO coefficients greater than that of LiNbO₃ (30 pm V^{-1} at 1300 nm) are required,³ necessitating highly (moderate) nonlinear chromophores present in small (large) amounts.

Ground rules for optimizing the chromophore second-order polarizability, β , responsible for second-order NLO effects, are now well understood and involve optimizing the ground-state polarization *via* the correct combination of D/A pairs for a given π bridge, where the ground-state polarization is related to the degree of mixing of two limiting charge-transfer forms of the molecule.⁴ It has been shown theoretically⁵ and experimentally⁴ that β , as a function of ground-state polarization and thus mixing, exhibits positive and negative maxima.

For common stilbene and thiophene bridges, there is evidence^{6,7} that the ground-state polarization required to optimize β in a positive sense, has not, to date, been reached, requiring stronger D/A groups than those currently used, of which the tricyanovinyl (TCV) acceptor is amongst the strongest.8 The tricyanoquinodimethane (TCQ) acceptor is known to form a strongly hydrophilic end-group in Langmuir-Blodgett film-forming materials, consistent with a large acceptor strength.⁹ Recently, a very large negative β value for a novel TCQ-containing D/A polyenic zwitterion was reported; however, questions about the chromophore stability remain.¹⁰ In this paper, TCQ-containing chromophores are shown to possess both significantly larger nonlinearities, measured using an EO technique, and similar thermal stabilities (>200 °C) to analogous molecules bearing the TCV moiety. Additionally, a guest-host system containing 2 mol% of one TCQ-containing chromophore, possessed a similar EO coefficient at 1550 nm as LiNbO₃. Finally, the degree of ground-state polarization required to optimize β in a positive sense, may have been surpassed for a D-thiophene-TCQ chromophore.

The molecules examined, with a brief synthetic description of the previously unreported chromophores, are shown in Scheme 1. Compounds 1, 2, 4, 9 and 10 were synthesized using literature

Scheme 1 Reagents and conditions: i, N_*N -dibutylaniline, H_2SO_4 , AcOH, NaNO₂, 10 °C, 23%; ii, TCNQ, DMF, 80 °C, 2 h; iii, 4-(4-methylpentyl)-piperidine, toluene, reflux, 2 h, 40%; iv, DMF, hv, 25 °C, 45 min, 29%; v, DMF, hv, 25 °C, 15 min, 38%

Chem. Commun., 1996 793

procedures.^{8,11,12} TCQ was introduced in **5** and **8** using a modified procedure,¹¹ whereas **3** was obtained by azo coupling the diazotized aniline **1** with *N*,*N*-dibutylaniline. Disperse Red I (DR1), purchased commercially and used as received (Aldrich 34420-6), was studied since it (*i*) afforded comparison with **3** and (*ii*) is a common benchmark for EO polymers.² The purity of synthesized chromophores was checked using normal methods.

The real and imaginary components of the EO coefficient, r_{33} , of dye-doped polymers were measured at 1064 nm using an angle-dependent, modulated-intensity, ellipsometric method,¹³ with sample preparation detailed previously.¹⁴ Chromophores were dispersed in either polymethylmethacrylate (PMMA) or polycarbonate (PC), both purchased commercially (PMMA: Aldrich 18226-5, $T_g = 95$ °C; PC: Aldrich 18162-5, $T_g = 150$ °C) and used without further purification.

The r_{33} coefficients of the chromophores studied are presented in Table 1, along with the maximum absorption wavelength, λ_{max} , in both chloroform and the appropriate polymer host. Absorption coefficients in chloroform are also given.

Comparing 9 with 11 clearly demonstrates that substitution of TCV with TCQ leads to a very large bathochromic shift in charge-transfer absorption. This may be rationalized by both the increased conjugation length of the TCQ-containing dye and by the aromatic–quinonal nature of the ground-state of 11, where the loss of aromatic stabilization energy in the alkyl-substituted aniline ring upon charge transfer is offset by a concomitant gain in the TCQ ring, increasing the degree of ground-state polarization.¹⁵ A similar bathochromic shift is observed by comparing (*i*) 2 with *N*,*N*-dimethyl-*p*-(tricyanovinyl)aniline, which has a λ_{max} of 516 nm⁶ and (*ii*) 3 with DR1.

For all dyes studied, except 11, the imaginary component of r_{33} at 1064 nm was negligible. The EO measurement was therefore repeated with 11 at 1550 nm, where the extremely large and purely real r_{33} of 31 pm V⁻¹, similar to LiNbO₃, was obtained. The lack of a significant imaginary component at 1550 nm was evidenced by (i) agreement between the theoretical angle-dependent modulated intensity, using a model based on transparent guest-host films,13 and that observed experimentally (Fig. $1 \approx$), and (ii) the extremely small absorption coefficient of 1.68 dm³ mol⁻¹ cm⁻¹ in chloroform. To afford comparison between TCV- and TCQ-containing dyes, 9 was also measured at 1550 nm, with the resulting r_{33} significantly smaller than for 11, despite 9 being one of the most promising EO dyes known.⁷ This difference in r_{33} , which does not arise due to either the red-shifted λ_{max} of 11 [the calculated EO dispersion-enhancement factor, using a two-state quantummechanical model,² being 1.8 (1.4) for 11 (9) at 1550 nm] or a significantly enhanced ground-state dipole moment [12.5 D (10.1 D) for 11 (9) in CHCl₃], underscores the benefits of the TCQ acceptor. The advantage of TCQ is also highlighted by comparing the EO coefficients at 1064 nm of (i) 2 with N,N-

dimethyl-*p*-(tricyanovinyl)aniline, calculated to have an r_{33} of 1.3 pm V⁻¹,⁶ and (*ii*) **3** with DR1.

Chromophore 8 differs from 2 by replacement of the benzene π -electron bridge with thiophene, which is known to increase ground-state polarization.⁷ Given the red-shifted λ_{max} , it is reasonable that the ground-state polarization of 8 is increased relative to 2. However, this increase in λ_{max} was accompanied by a significant decrease in r_{33} , and thus β , suggesting that the degree of ground-state polarization required to optimize β had been surpassed.

Preliminary thermal stability data, as measured by DSC, showed 2 melted at 140 °C and decomposed at 250 °C. However DSC, depending on the heating rate, may overestimate thermal stability. We therefore examined the change in the charge-transfer absorption band of dye-doped polymers after baking, under reduced pressure, for 30 min at a specified temperature. If > 60% of the initial absorbance remained, the sample was re-baked, but at a higher temperature, with this cycle repeated until 60% of the initial absorbance remainedthe final baking temperature being defined as the thermal stability (Table 1). In this test, dye decomposition and outdiffusion both play a role. The data in Table 1 show: (i) all dyes possess similar thermal stabilities, which may be large enough for some applications;³ (ii) the greater thermal stability of the fused-thiophene analogue 5 is consistent with previous results;⁷ and (iii) the thermal stabilities are larger than those reported previously for D/A thiophenes.¹⁶ An improvement in thermal

Fig. 1 Angle-dependent experimental (●) and theoretical (---) modulated intensity for 11 at 1550 nm

Table 1	Physical	and optical	properties	of the new	chromophores
---------	----------	-------------	------------	------------	--------------

Dye	λ _{max} ^a /nm (CHCl ₃)	log (ϵ/dm^3 mol ⁻¹ cm ⁻¹) (CHCl ₃)	Polymer	λ _{max} ^a /nm (polymer)	r ₃₃ ^b /pm V ⁻¹ (1064 nm)	r ₃₃ ^b /pm V ⁻¹ (1550 nm)	Thermal stability ^c (T/°C)	
2	700	4.79	PMMA	690	10.6	4.7	235	
9	697	4.62	PC	682	10.0	5.1	235	
11	867	4.75	PC	848		31	210	
8	738	4.83	PC	724	6.0	_	220	
5	614	4.56	PMMA	588	3.6	_	240	
3	679	4.46	PMMA	632	10.0	_	200	
DR1	480	4.50	PMMA	488	1.3	_	210	

^a Absorption maxima, λ_{max} , in both chloroform and a polymer host; absorption coefficient, ε , in chloroform. ^b The real part of the EO coefficient, r_{33} , at 1064 and 1550 nm. Due to differences in both chromophore solubility and polymer T_g , all EO coefficients have been 'normalized' to that of a 2 mol% dye–PMMA film, poled at 105 °C with 1 MV cm⁻¹. ^c Thermal stabilities are defined as being the temperature at which 60% of the initial chromophore absorbance remained after baking the polymer film for 30 min under reduced pressure.

stability of some dyes, without a concomitant reduction in r_{33} , may be possible by replacing dialkylamino donor groups with diarylamino moieties.¹⁷

Compounds 2 and 9 show both similar thermal stabilities and r_{33} values. However, 9 requires an elaborate synthesis⁸ whereas 2 is obtained in a simple 'one-pot' procedure.

TCQ-containing chromophores possess second-order optical nonlinearities (thermal stabilities) which are much greater than (equivalent to) analogous compounds bearing the TCV acceptor. One guest-host film, containing 2 mol% of a TCQchromophore, gave an EO coefficient comparable to LiNbO₃ and a thermal stability of 210 °C, with further improvements in thermal stability, without degradation of the nonlinearity.

This work was supported by the Volkswagen-Stiftung (I/68350). G. B. is grateful to the Alexander von Humboldt Stiftung for financial support.

References

- 1 P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991.
- 2 K. D. Singer, S. L. Lalama, J. E. Sohn and R. D. Small, in *Nonlinear Optical Properties of Organic Molecules and Crystals 1*, ed. D. S. Chemla and J. Zyss, Academic Press, Orlando, FL, 1987, p. 437.
- 3 S. R. Marder and J. W. Perry, Science, 1994, 263, 1706.
- 4 S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J.-L. Brédas and B. M. Pierce, *Science*, 1994, **265**, 632.

- 5 C. B. Gorman and S. R. Marder, Proc. Natl. Acad. Sci. USA, 1993, 90, 11297.
- 6 L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken and S. R. Marder, J. Phys. Chem., 1991, 95, 10631.
- 7 K. J. Drost, A. K.-Y. Jen and V. P. Rao, Chemtech, 1995, Sept. 16th.
- 8 V. P. Rao, A. K.-Y. Jen, K. Y. Wong and K. J. Drost, J. Chem. Soc., Chem. Commun., 1993, 1118.
- 9 G. J. Ashwell, E. J. C. Dawnay, A. P. Kuczynski, M. Szablewski, I. M. Sandy, M. M. Bryce, A. M. Grainger and M. Hasan, J. Chem. Soc., Faraday Trans., 1990, 86, 1117.
- 10 G. H. Cross, D. Bloor, T. L. Axon, M. Farsari, D. Gray, D. Healy, M. Swann and M. Szablewski, *Proc. SPIE*, 1994, **2285**, 11.
- 11 B. P. Bespalov, A. A. Pankratov and V. V. Titov, J. Org. Chem. USSR (Engl. Transl.), 1974, 10, 1072.
- 12 P. Boldt, M. Blenkle, I. Cabrera, D. Lupo and W. Hickel, Nonlinear Opt., 1994, 8, 173.
- 13 Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret and F. Kajzar, *Mol. Cryst. Liq. Cryst.*, 1993, 4, 1, and references therein.
- 14 R. Kammler, G. Bourhill, Y. Jin, Ch. Bräuchle, G. Görlitz and H. Hartmann, J. Chem. Soc., Faraday Trans., in the press.
- 15 S. R. Marder, D. N. Beratan and L.-T. Cheng, Science, 1991, 252, 103.
- 16 S. Gilmour, S. R. Marder, J. W. Perry and L.-T. Cheng, Adv. Mater., 1994, 6, 494.
- 17 C. R. Moylan, R. J. Twieg, V. Y. Lee, S. A. Swanson, K. M. Betterton and R. D. Miller, J. Am. Chem. Soc., 1993, 115, 12599.

Received, 7th December 1995; Com. 5/07984E