Rational synthesis of anionic, neutral and cationic palladium(1) dinuclear complexes containing bridging conjugated dienes

Tetsuro Murahashi, Nobuko Kanehisa, Yasushi Kai, Toshiaki Otani and Hideo Kurosawa*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565, Japan

Addition of conjugated diene to an equimolar mixture of palladium(I1) halides and a palladium(0) complex induces facile Pd-Pd bond formation to give anionic, neutral and cationic Pd^L-Pd^I dinuclear complexes containing bridging **1,3-diene ligands.**

Increasing attention has been paid to organopalladium complexes containing a Pd-Pd bond bridged by 4e-donating hydrocarbon ligands, such as alkyne,¹ allyl,² allenyl/prop- 2 -ynyl,³ cyclopentadienyl,² or arene.⁴ Another ubiquitous 4e donor, 1,3-diene, has been used only rarely as a bridging ligand at Pd-Pd, an example being $[(isoprene)Pd_2(\mu-PBu^t_2)(PH-I)]$ $Bu'_2)_2$ ⁺, recently prepared by exchange of a bridging PHBu^t₂ ligand on Pd-Pd with the diene;⁵ by contrast the $1,3$ -diene chemistry of mononuclear palladium-(11) and -(O) complexes has been extensively developed.⁶ We report here a convenient method for the synthesis of 1,3-diene complexes containing Pd-Pd moieties, including two new fragments, $[Pd_2X_2(\mu-X)]$ and $[Pd_2X(\mu-X)(PPh_3)]$, which involves a directed Pd-Pd bond formation as a key step. This method is novel when compared to those for the known 1,3-diene complexes of di- or poly-nuclear metal systems7 employing a simple ligand substitution on the pre-formed metal-metal bond,[†] as above.⁵

A mixture of $[Pd_2X_4(PPh_3)_2]$ $(X = Cl, Br, I)$ and $[Pd_2(dba)_3]$ (dba = dibenzylideneacetone) was stirred in $CH₂Cl₂$, through which buta-1,3-diene was bubbled for 0.5 h at room temperature, to give a deep-red solution. From this solution deep-

Ph3P, X X @ **ph3p-Pd-Pd-X Pd; ;Pd:** ⁺**[Pd2(dba)31** - **2** \/ **X** \overline{X} \overline{Y} $\overline{P}Ph_3$ $\overline{P}Ph_2$ $\overline{P}Pf_3$ $\overline{P}Pf_1$ **2PdCl₂(PhCN)₂ + 2PPh₄CI +** $[Pd_2(dba)_3]$ $\frac{CH_2Cl_2}{CH_2Cl_2}$ **2** $\frac{PH_3P}{CH_3P}$ $\frac{CI}{CH_2P}$ $\frac{PH_3P}{CH_3P}$ $\frac{CI}{CH_2P}$ $\frac{2PH_3P}{CH_2Cl_2}$ $\frac{2PH_3P}{CH_2Cl_2}$ $\frac{2PH_3P}{CH_2Cl_2}$ $\frac{2PH_3P}{CH_2Cl_2}$ **\frac{2PH_3P 3**

6 L = $P(C_6H_4Me-p)_3$

Ly **Pd- Pd,** \ / **CI CI**

 $5L = PPh₃$ **7** L = $P(C_6H_4Me-p)_3$

 $8L = PPh_3$ **9** L = $P(C_6H_4Me-p)_3$

red crystals of 1 were obtained $(X = C1 1a, Br 1b, I 1c)$ in 7042% yield after crystallization.\$ The synthetic route to **1** could be used in the preparation of the corresponding cationic orange complex **2** (70% yield) or anionic deep-red complex **3 (49%** yield). The new complexes were all stable to air and water at room temperature in the solid state, while in solution **lc** was much less stable than **la** or **lb** presumably because of the terminal iodide.

A series of isoprene analogues **4-10** was prepared similarly in 53-71% yield. $\frac{1}{4}$ A pair of regioisomers was generated for the neutral complexes **4,** *5* (85 : 15) or **6, 7** (85 : 15).

lH-lH **NMR** homodecoupling experiments on **lb** revealed an s-vicinal coupling of 11.2 **Hz,** which implies that the coordination geometry of butadiene is *s-trans* in solution. The structure of **lb** was confirmed by X-ray diffraction (Fig. 1).§ The central buta-1,3-diene carbons $C(2)$ and $C(3)$ were disordered with an unequal occupancy $[C(2), C(3): C(2'), C(3') = 70:30]$ so as to give a pair of diastereoismers due to the chiral geometry of PPh₃ in the crystal. This disorder makes a detailed discussion about the structural parameters of the buta-l,3-diene difficult. However, the geometry is deduced to be η^2 : η^2 -s-trans by the distance between the non-disordered terminal $C(1)$ and $C(4)$ atoms [3.87(2) A]; for an *s-cis* diene this would be *ca.* 2.8 **A.** The Pd–Pd distance of 2.662(1) \AA is in the range of normal Pd– Pd single bonds $(2.50-2.84 \text{ Å})$.⁸ The two Pd atoms, P, Br(1) and Br(2) are virtually on the same plane.

The structure of **10** was also determined by X-ray diffraction (Fig. *2).§* Both inner carbons and the methyl group of the

Fig. 1 ORTEP drawing of lb showing 50% probability ellipsoids. Selected bond distances (Å) and angles (°): Pd(1)-Pd(2) 2.662(1), Pd(1)-P 2.278(3), Pd(1)-Br(1) 2.448(2), Pd(2)-Br(1) 2.487(2), Pd(2)-Br(2) 2.450(2), Pd(1)- $C(1)$ 2.12(1), Pd(1)– $C(2)$ 2.25(2), Pd(2)– $C(3)$ 2.15(3), Pd(2)– $C(4)$ 2.14(1), Pd(1)-C(2') 2.29(10), Pd(2)-C(3') 2.17(7), C(1)-C(2) 1.40(3), C(2)-C(3) $C(4)$ 1.42(9), P-Pd(1)-Pd(2) 167.59(8), Br(2)-Pd(2)-Pd(1) 158.85(5), P-Pd(1)-Br(1) 109.59(8), Br(2)-Pd(2)-Br(1) 102.20(5), Pd(1)-Br(1)- Pd(2) 1.44(7), C(3)-C(4) 1.42(6), C(l)-C(2') 1.5(1), C(2')-C(3') 1.6(2), C(3')- 65.28(4), C(1)-C(2)-C(3) 127(4), C(2)-C(3)4(4) 127(6), **C(** l)-C(2')- C(3') 121(16), C(2')-C(3')-C(4) 115(13), Pd(1)-Pd(2)-C(4) 111.8(3), Pd(2)-Pd(1)-C(1) $101.1(3)$.

Chem. Commun., **1996 825**

Fig. 2 ORTEP drawing of 10 showing 50% probability ellipsoids. Selected bond distances (A) and angles $(°)$: $Pd(1) - Pd(2)$ 2.5776(2), $Pd(1) - Cl(1)$ 2.344(2), C1(**1**)-Pd(1)-Pd(2) **1** 62.73 (4), C1(1)-Pd(1)-Cl(2) 1 05.6 **1** (6), 2.332(2), Pd(1)-C1(2) 2.378(**I),** Pd(2)-C1(2) 2.389(l), Pd(2)-C1(3) Pd(1)-Cl(2)-Pd(2) 65.47(4).

isoprene are disordered giving a pair of enantiomers. The occupancy was set as $50:50$ by refinement. The geometry of the isoprene is also η^2 : η^2 -s-trans [C(1)–C(4) 3.82(1) Å] and the Pd atoms and three C1 atoms are almost coplanar. Pd-Pd bond distance is 2.578(1) Å, shorter than in **1b**. The two

At first sight, our synthetic methodology appears to be a simple redox condensation reaction between PdII and Pd⁰ moieties leading to Pd-Pd bond formation. However, the presence of a conjugated diene is required for this process. Thus, when a mixture of $[\text{Pd}_2\text{Cl}_4\{\text{P}(C_6\text{H}_4\text{Me}-p)_3\}_2]$ or $[Pd_2Cl_2\{P(C_6H_4Me-p)_3\}_4][PF_6]_2$ and $[Pd_2(dba)_3]$ was monitored by $31P$ NMR in CDCl₃ or CD₂Cl₂ solution at room temperature, no reaction was observed to occur until isoprene was added, and the corresponding palladium dinuclear complexes 6, 7 or 9 $(J_{PP} = 83 \text{ Hz})$ began to form gradually. Use of non-conjugated dienes such as penta-1,4-diene or norborna-2,5-diene did not give the corresponding palladium dinuclear complexes. Coordination of *trans,trans-diphenylbuta-1,3-diene* to Pd-Pd was observed (1H NMR monitoring experiment) only with the anionic fragment, $[{\rm Pd_2Cl_2}(\mu$ -Cl)⁻ (δ 4.85, 3.39 for PhCH=CH-). Interestingly, cyclohexa-1,3-diene also had the ability to construct the anionic dinuclear complex **11,** but no such ability to form neutral and cationic dinuclear complexes; **11** was easily decomposed in solution to generate benzene and a palladium mirror.

A 1,3-diene ligand on Pd-Pd undergoes facile exchange with free 1,3-dienes. Equilibrium constants for competitive coordination of buta-1,3-diene and isoprene on $[Pd_2Cl(\mu-Cl)(PPh_3)]$, $[Pd_2(\mu-Cl)(PPh_3)_2]^+$ or $[Pd_2Cl_2(\mu-Cl)]^-$ showed preferrential coordination of buta-1,3-diene $(K_{eq} = 1.6, 4.8$ or 2.9 at 25 °C in CDCl₃). Reactions of the new complexes with other unsaturated hydrocarbons are under investigation.

Footnotes

t Exceptions to this synthetic pathway involve metal-metal bond formation from mononuclear fragments through irradiation^{7d} or multistep processes,76.c which however result in low-yield product formation.

 \ddagger All new complexes (except 11) gave satisfactory elemental analyses. *Selected NMR spectroscopic data* (in CDC13). lb: lH, 6 7.7-7.4 (m, Ph), 4.76 (d, 1 H, *J* 6.96 Hz), 3.49 (d, 1 H, J 12.8 Hz), 3.35 (dddd, 1 H, *J* 6.96, 12.8, 3.30, 11.2Hz), 3.13 (ddd, 1 H, J7.52, 1.06,3.11 Hz), 2.87 (ddd, **1** H, J7.24, 12.0, 11.2 Hz), 2.52 (dd, **1** H, J 12.0, 1.06 Hz); 31P, [ext. P(OMe)3] 6 -114.13(s). **8:** 'H, 6 7.7-7.4 (m, Ph), 3.65 (br **s,** 1 H), 3.39 (br d, **1** H), 3.37 (br d, **1** H), 3.23 (br ddd, **1 H),** 2.72 (dd, **1** H), 0.99 (dd, 3 H); 3IP, 6 70.46 **(s),** 49.89 **(s),** 19.10 **(s).** 11: IH, 6 8.0-7.6 (m, Ph), 5.21 (m, 2 H), 5.15 (m, 2 H), 1.36 (br **s,** 4 H). -109.07 (d, *J* 85 Hz), -112.26 (d); 13C, 6 133.89-29.26 (Ph), 89.34 **(s),**

§ *Crystal data* for **1b** H_2O : $C_{24}H_{21}Br_2OPPd_2$, $M = 707.00$, triclinic, space group *P*I (no. 2), $a = 11.463(3)$, $b = 12.407(2)$, $c = 8.871(1)$ Å, $\alpha =$ $100.29(1)$, $\beta = 91.62(2)$, $\gamma = 92.80(2)$ °, $U = 1239.0(4)$ \AA ³, $Z = 2$, $F(000)$ = 680, D_c = 1.895 g cm⁻³, μ (Mo-K α) = 47.62 cm⁻¹, 276 variables refined with 4166 reflections with $I > 3\sigma(I)$ to $R = 0.056$, $R_w = 0.070$. For 10 CH₂Cl₂: C₃₀H₃₀Cl₅PPd₂, $M = 811.61$, triclinic, space group $P\overline{1}$ (no. 2), $a = 10.099(2), b = 18.186(4), c = 9.026(2)$ Å, $\alpha = 90.83(2), \beta =$ 94.11(1), $\gamma = 104.79(1)$ °, $U = 1597.7(5)$ \AA ³, $Z = 2$, $F(000) = 804$, $D_c =$ 1.687 g cm^{-3} , $\mu \text{(Mo-K}\alpha) = 16.13 \text{ cm}^{-1}$, 371 variables refined with 5647 reflections with $I > 3\sigma(I)$ to $R = 0.049$, $R_w = 0.044$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. **1.** Any request to the CCDC for this material should quote the full literature citation and the reference number 182/5.

The geometry of PPh₄+ in the crystal was chiral. However, the steric effect of this cation on the μ -isoprene geometry is thought to be negligible, so as to lead to occupancies of 50 : 50.

References

- **T.** R. Jack, C. J. May and J. Powell, J. *Am. Chem.* **SOC.,** 1977,99,4707; N. G. Connelly, W. E. Geiger, A. G. Orpen, J. J. Orsini and K. **E.** Richardson, *J. Chem.* Soc., *Dalton Trans.,* 1991, 2967; H. Werner, P. Thometzek, K. Zenkert, R. Goddard and H.-J. Kraus, *Chem. Ber.,* 1987, 120, 365.
- H. Werner, *Adv. Organomet. Chem.,* 1981,19, 155.
- $\mathbf{3}$ **S.** Ogoshi, K. Tsutsumi, M. Ooi and **H.** Kurosawa, *J. Am. Chem.* **SOC.,** 1995,117, 10415.
- G. Allegra, A. Immirzi and L. Porri, *J. Am. Chem. SOC.,* 1965,87, 1394; G. Allergra, G. T. Casagrande, A. Immirzi, **L.** Porri and G. Vitulli, *J. Am. Chem. SOC.,* 1970,92,289; J. Dupont, M. Pfeffer, M. A. Rotteveel, A. De Cian and J. Fischer, *Organometallics,* 1989,8, 11 16; M. Sommovigo, M. Pasquali, P. Leoni, D. Braga and **P.** Sabationo, *Chem. Ber.,* 1991, 124, 97.
- P. Leoni, M. Pasquali, M. Sommovigo, A. Albinati, F. Lianza, P. **S.** Pregosin and H. Ruegger, *Organometallics,* 1993, 12, 4503.
- P. M. Maitlis, P. Espinet and M. J. H. Russell, *Comprehensive Organometallic Chemistry,* ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, 1982, vol. 6, p. 363; **J.** A. Davies, *Comprehensive Organometallic Chemistry II,* ed. E. W. Abel, F. G. A. Stone, G. Wilkinson and R. J. Puddephatt, Elsevier, 1995, vol. 9, p. 291.
- *(a)* N. Spetseris, J. R. Norton and C. D. Rithner, *Organometallics,* 1995, 14,603 and references therein; *(b)* H. Lehmkuhl, F. Danowski, R. Benn, R. Mynott and G. Schroth, *Chem. Ber.,* 1986, 119, 2542; (c) K. K. Cheung, R. **J.** Cross, **K.** P. Forrest, R. Wardle and M. Mercer, *J. Chem. SOC., Chem. Commun.,* 1971, 875; (d) J. A. King, Jr. and P. C. Vollhardt, *Organometallics,* 1983, 2, 684.
- K. Tani, **S.** Nakamura, T. Yamagata and *Y.* Kataoka, *Inorg. Chem.,* 1993, 32,5398; M. D. Fryzuk, B. R. Lloyd, G. K. B. Clentsmith and **S.** J. Rettig, J. *Am. Chem. SOC.,* 1994,116,3804.

Received, 21 st *December 1995; Corn.* 5l08297H