Palladium-catalysed cross-coupling reactions of aryl-, alkenyl- and alkynyl-iodonium salts and iodanes with terminal alkynes in aqueous medium

Suk-Ku Kang,* Hong-Woo Lee, Su-Bum Jang and Pil-Su Ho

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea

The ligand-free $Pd(OAc)_2$ -catalysed coupling reaction of aryl-, alkenyl- and alkynyl-iodonium tetrafluoroborate and iodanes with terminal alkynes proceeds readily in the presence of NaHCO₃ in aqueous medium to afford the substituted alkynes in high yields under mild conditions.

The palladium-catalysed cross-coupling of aryl or vinyl halides with terminal alkynes gives substituted alkynes at elevated temperature.¹ However, in the presence of cuprous iodide as a co-catalyst, the palladium-catalysed coupling can proceed under mild conditions in excellent yields, a procedure known as the Sonogashira reaction,² and which is utilized in the synthesis of a variety of natural products. Recently, Linstrumelle³ reported that vinyl and aryl halides or triflates reacted with terminal acetylenes without addition of a copper salt to provide aryl- and alkenyl-substituted acetylenes using piperidine or pyrrolidine as base. In connection with our programs to utilize iodonium salts⁴ in palladium-catalysed cross-coupling,⁵ we have investigated the coupling of iodonium salts and iodanes with terminal alkynes. Here we report Pd-catalysed crosscoupling of aryl- and alkynyl-iodonium salts and iodanes with terminal alkynes under aqueous conditions without using Cu^I compounds as co-catalysts and with high catalytic turnovers (Scheme 1).

The results of palladium-catalysed cross-coupling⁶ of hypervalent iodonium salts⁷ with terminal alkynes are summarized in Scheme 1 and Table 1. The phenylacetylene **1a** (1 equiv.) was treated with diphenyliodonium tetrafluoroborate **2a** (1 equiv.) in the presence of Pd(OAc)₂ (0.2 mol%) and NaHCO₃ (1 equiv.)

R ¹ ————————————————————————————————————	R²l+Ph X⁻
1a R ¹ = Ph b R ¹ = Bu c R ¹ = CH ₂ OH d R ¹ = O O O O O O O O	2a $R^2 = Ph$ $X^- = BF_4^-$ b $R^2 = 2$ -Thienyl $X^- = -OTs$ c $R^2 = (E)$ -PHCH=CH $X^- = BF_4^-$ d $R^2 = PhC = C$
e R ¹ = SiMe ₃ R ¹	X [−] = BF ₄ [−] ↓ i B ²
n.	
3a $R^1 = Ph$, $R^2 = Ph$ b $R^1 = Ph$, $R^2 = 2$ -Thienyl	$j R^{1} = \underbrace{OBn}_{OBn}, R^{2} = Ph$
c R ¹ = Ph, R ² = (<i>E</i>)-PhCH=CH d R ¹ =Ph, R ² = PhC=C e R ¹ = Bu, R ² = Ph (D1 - Bu, D ² = 0. This is the	k $R^1 = \bigcirc_{O = O \\ O \\$
f R ¹ = Bu, R ² = 2-Thienyl g R ¹ = Bu, R ² = PhC=C h R ¹ = CH ₂ OH, R ² = Ph i R ¹ = CH ₂ OH, R ² = 2-Thienyl	I $R^1 = SiMe_3, R^2 = Ph$ m $R^1 = SiMe_3, R^2 = 2$ -Thienyl n $R^1 = SiMe_3, R^2 = PhC \equiv C$

Scheme 1 Reagents and conditions: i, $Pd(OAc)_2$ (0.2 mol%), $NaHCO_3$ (1 equiv.), $MeCN-H_2O$ (4:1), room temp.

in MeCN-H₂O (4:1) at room temperature for 10 minutes to afford diphenylacetylene 3a in 96% yield. Of the four bases (NaHCO₃, triethylamine, Pri₂NEt, and pyrrolidine) tested, NaHCO₃ proved most effective. It is notable that even in the absence of base, comparable yields were afforded (entry 1 in Table 1). As solvent system, MeCN– $H_2O(4:1)$ was better than DMF in terms of yield and reactivity. Under the same conditions, when 2-thienyl(phenyl)iodonium tosylate 2b⁸ was employed as iodonium salt, 2-thienyl-substituted acetylene 3b was obtained as the sole product in 89% yield (entry 2). Alkenyl(phenyl)iodonium salt $2c^7$ was also coupled with the terminal alkyne 1a to affored alkenyl-substituted alkyne 3c in 83% yield (entry 3). This cross-coupling was applied to alkynyl(phenyl)iodonium salt 2d7 to provide the alkynylsubstituted acetylene 3d in 93% yield (entry 4).9 Treatment of hex-1-yne 1b with diphenyliodonium salt 2a, 2-thienyl-(phenyl)iodonium salt 2b and alkynyliodonium salt 2d provided the coupled products 3e-g, respectively (entries 5-7). It is noteworthy that the coupling of prop-2-yn-1-ol 1c with iodonium salts 2a and 2b afforded the substituted prop-2-yn-1-ols 3h and 3i without the formation of unsaturated aldehyde resulting from base-catalysed iosmerization¹⁰ (entries 8 and 9). For the prop-2-ynylic cyclic carbonates 1d, diphenyliodonium and alkynyliodonium tetrafluoroborates 2a and 2d were smoothly coupled to afford the substituted prop-2-ynylic carbonates 3j and 3k without any deprotection (entries 10 and 11). Finally, treatment of trimethylsilylacetylene le with iodonium salts 2a-b and 2d afforded the substituted acetylenes **3l-n** (entries 12–14).

In considering a plausible mechanism for the formation of the diyne 3d, it is presumed that facile oxidative addition of the highly electrophilic alkynyliodonium salt 2d with Pd⁰ gives polar and reactive organopalladium tetrafluoroborate

Table 1 Palladium-catalysed cross-coupling of iodonium salts with terminal alkynes a

Entry	Substrate	Iodonium salt	t/min	Product	Yield(%) ^b
1	1a	2a	10	3a	96(93)
2	1a	2b	20	3b	87(88)
3	1a	2c	15	3c	83(81)
4	1a	2d	10	3d	93(92)
5	1b	2a	20	3e	92(91)
6	1b	2b	25	3f	56(40)
7	1b	2d	20	3g	90(88)
8	1c	2a	5	3ĥ	98(95)
9	1c	2b	10	3i	93(91)
10	1d	2a	5	3j	97(92)
11	1d	2d	5	3k	93(91)
12	1e	2a	10	31	95(93)
13	1e	2b	10	3m	93(90)
14	1e	2d	10	3n	92(90)

^a All the reactions were run with terminal alkynes (1 equiv.) and iodonium salt (1 equiv.) in the presence of Pd(OAc)₂ (0.2 mol%) and NaHCO₃ (1 equiv.) in MeCN-H₂O (4:1) at room temperature. ^b The yields are isolated yields. The yields in parentheses are for reactions carried out in the absence of base.

(PhC=CPd+ BF₄⁻). This intermediate is subjected to alkynylation with phenylacetylene **1a** to form dialkynylpalladium(II) [(PhC=C)₂Pd] followed by reductive elimination to afford the coupled diyne **3d**. Alternatively, we have investigated palladium-catalysed cross-coupling of terminal alkynes with iodanes. The results are summarized in Scheme 2 and Table 2.

We coupled the terminal alkyne **1a** with readily available [hydroxy(tosyloxy)iodo]benzene (HTIB), PhI(OH)OTs **4**¹¹ (also known as Koser's reagent), to afford the phenyl-substituted alkyne **3a** in 78% yield (entry 1). The reaction can also be carried out in the absence of base (entry 1 in Table 2).

Scheme 2 Reagents and conditions: i, Pd(OAc)₂ (0.2 mol%), NaHCO₃ (1 equiv.), MeCN-H₂O (4:1), room temp., 5 or 10 min

Table 2 Palladium-catalysed cross-coupling of iodanes with terminal alkynes^a

Entry	Substrate	Iodonium salt	t/min	Product	Yield(%) ^b
1	1 a	4	25	3a	78(75) ^c
2	1a	5	20	3a	80(76)
3	1b	4	30	3e	76(70)
4	1b	5	20	3e	80(74)
5	1c	4	20	3h	91(89)
6	1c	5	20	3h	95(91)
7	1d	4	30	3j	91(86)
8	1d	5	20	3j	90(88)
9	1e	4	5	31	92(90)
10	1e	5	5	31	96(93)

^{*a*} All the reactions were run with terminal alkynes (1 equiv.) and iodanes (1 equiv.) in the presence of Pd(OAc)₂ (0.2 mol%) and NaHCO₃ (1 equiv.) in MeCN-H₂O (4:1) at room temperature. ^{*b*} The yields are isolated yields. The yields in parentheses are for reactions carried out in the absence of base. ^{*c*} The yield can be improved to 93% by addition of CuI.

When the terminal alkyne 1a was subjected to react with μ -oxobis[(trifluoromethanesulfonato)(phenyl)iodine] 5 (also known as Zefirov's reagent¹²) under the same conditions, phenyl-substituted acetylene 3a was afforded in 80% yield (entry 2). Even without using base, a comparable yield was obtained. Treatment of hex-1-yne 1b with 4 or 5 furnished 3e, respectively (entries 4 and 5). It is notable that the coupling of prop-2-yn-1-ol 1c with Koser's or Zefirov's reagent afforded 3h without formation of any aldehyde (entries 6 and 7). For the prop-2-ynylic cyclic carbonate 1d, coupling with 4 or 5 afforded 3j without any deprotection (entries 8 and 9). Finally, reaction of trimethylsilylacetylene 1e with 4 or 5 afforded the substituted alkyne 3l (entries 10 and 11).

We thank generous financial support by KOSEF-OCRC and Ministry of Education (BSRI-95-3420).

References

- 1 H. A. Dick and F. R. Heck, J. Organomet. Chem., 1975, 93, 259; L. Casar, J. Organomet. Chem., 1975, 93, 253.
- K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, 16, 4467;
 K. Sonogashira, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 3, p. 521;
 R. Rossi, A. Carpita and F. Bellina, *Org. Prep. Proced. Int.*, 1995, 27, 129.
- 3 M. Alami, F. Ferri and G. Linstrumella, Tetrahedron Lett., 1993, 34, 6403.
- 4 For the recent reviews for iodonium salts: P. J. Stang, Angew. Chem., Int. Ed. Engl., 1992, 31, 274; R. M. Moriarty and R. K. Vaid, Synthesis, 1990, 431; M. Ochiai, Rev. Heteroat. Chem., 1989, 2, 92.
- 5 S.-K. Kang, K.-Y. Jung, C.-H. Park and S.-B. Jang, *Tetrahedron Lett.*, 1995, 36, 8047.
- 6 Pd-catalysed C-C bond formation: R. M. Moriarty, W. R. Epa and A. K. Awasthi, J. Am. Chem. Soc., 1991, 113, 6315; R. M. Moriarty and W. R. Epa, Tetrahedron Lett., 1992, 33, 4095; R. J. Hinkle, G. T. Poulter and P. J. Stang, J. Am. Chem. Soc., 1993, 115, 11626; K. Sugioka, M. Uchiyama, T. Suzuki and Y. Yamazaki, Nippon Kagaku Kaishi, 1985, 558; Chem. Abstr., 1986, 104, 109 137.
- 7 M. Ochiai, K. Sumi, Y. Takaoka, Y. Nagao, M. Shiro and E. Fujita, *Tetrahedron*, 1988, 44, 4095.
- 8 A. J. Morgida and G. F. Koser, J. Org. Chem., 1984, 49, 3643.
- 9 Diacetylene derivatives have been found to display liquid-crystalline and non-linear optical properties. See: A. E. Stiegman, E. Graham, K. J. Perry, L. R. Khundkar, L.-T. Cheng and J. W. Perry, J. Am. Chem. Soc., 1991, 113, 7658; C. Fouquey, J.-M. Lehn and J. Malthete, J. Chem. Soc., Chem. Commun., 1987, 1424.
- 10 K. Minn, Synlett, 1991, 115.
- 11 First synthesis: O. Neiland and B. Karek, J. Org. Chem. USSR (Engl. Transl.), 1970, 6, 889; G. F. Koser and R. H. Wettach, J. Org. Chem., 1977, 42, 1476.
- 12 N. S. Zefirov, V. V. Zhdankin and A. S. Koz'min, *Izv. Akad. Nauk SSR*, *Ser. Khim.*, 1983, 1682; V. V. Zefirov, Y. V. Dan'kov and A. S. Koz'min, *Zh. Org. Khim.*, 1984, **20**, 446; J. Gallos, A. Varvoglis and N. W. Alcock, *J. Chem. Soc.*, *Perkin Trans. 1*, 1985, 757; R. T. Hembre, C. P. Scott and J. R. Norton, *J. Org. Chem.*, 1987, **52**, 3650.

Received, 22nd November 1995; Com. 5/07639K