Synthesis and spectroscopic characterization of derivatives of proteinogenic amino acids, simultaneously labelled with ¹³C, ¹⁵N and ²H in the backbone

Yiannis Elemes and Ulf Ragnarsson*

Department of Biochemistry, University of Uppsala, Biomedical Center, PO Box 576, S-751 23 Uppsala, Sweden

As typical examples of derivatives of proteinogenic α -amino acids, simultaneously labelled with the stable isotopes ¹³C, ²H and ¹⁵N in the backbone, Boc-L-[1,2-¹³C₂, 2-²H, ¹⁵N]amino acids are synthesized in enantiopure form and spectroscopically characterized.

In continuation of our work¹ directed towards the synthesis of enantiopure L-amino acid derivatives containing the stable isotopes ¹⁵N and/or ¹³C or ²H for use in peptide synthesis,² we now report the preparation of additional isotopomers simultaneously containing all three of these nuclei. To our knowledge such compounds have not been reported previously.

The synthetic scheme underlying the present work is based on that for the corresponding α -deuteriated isotopomers recently reported.^{1c} Consequently, we shall only describe it very briefly here. The synthesis started from ethyl bis(methylsulfanyl)methylene[1,2-¹³C₂, ¹⁵N]glycinate,^{1b} but instead of coupling directly to the chiral auxiliary for asymmetric synthesis as reported,^{1b} the substance was first α -deuteriated in MeOD/D₂O with base catalysis to give ethyl bis(methylsulfanyl)methylene[1,2-¹³C₂,2,2,-²H₂, ¹⁵N]glycine, (MeS)₂C =

¹⁵N-¹³C²H₂-¹³CO-OEt **1** which was then coupled to the chiral auxiliary, providing (*R*)-*N*-{bis(methylsulfanyl)methylene $[1',2'-^{13}C_2,2',2'-^{2}H_2, \, ^{15}N]$ glycyl}bornane-10,2-sultam **2**. Subsequent alkylation of the enolate with MeI, BuⁱI and BnI, crystallization and chromatography on silica provided pure **3a–c** with (2'S) configuration which were cleaved off from the sultam in two steps, in accordance with Oppolzer's general procedure, to give the crude, free, labelled amino acids.³ Finally, these were *N*-protected with Boc₂O to give the corresponding derivatives **4a–d**, suitable for future synthetic work (**4a** and **4c** were isolated as DCHA salts).

Boc-L- $[1,2^{-13}C_2, 2^{-2}H, {}^{15}N]R$ R = Ala 4a, R = Leu 4b and R = Phe 4c Boc- $[1,2^{-13}C_2, 2,2^{-2}H_2, {}^{15}N]Gly$ 4d

Compounds **4a–d** were carefully characterized by mp, optical rotation and TLC and also by ¹H, ²H, ¹³C and ¹⁵N NMR and FTIR spectroscopy. The ²H content was determined by integration of the residual proton signals in the ¹H NMR spectra and was \geq 98% except for **4b** (~95%). The optical purity of **4a–c** (after deprotection) was confirmed by at least one chromatographic method (\geq 99.5% ee),^{1b,c,4} again confirming the unique efficiency of the original method.³ Although the alkylation of **2** takes place with loss of one ²H nucleus, this is not an unreasonable price to pay for the convenience of the procedure and, in our opinion, even more so for the excellent optical purity of the product. With all ¹³C/¹⁵N glycine isotopomers already previously available,⁵ it appears that the way is now open to further ¹³C/²H/¹⁵N backbone-labelled amino acids.

Fig. 1 61.25 MHz ²H NMR spectrum of 4a (as DCHA salt) in CDCl₃

Fig. 2 100.4 MHz ¹³C NMR spectrum of 4a (as DCHA salt) in CDCl₃

In their ²H NMR spectra, compounds **4a–d** exhibit typical broad doublets at δ 3.9–4.3 with ¹J_{DC} 20–21 Hz, as illustrated for **4a** in Fig. 1. The presence of the ²H nucleus in this compound is also prominently reflected in the ¹³C NMR spectrum as shown in Fig. 2. ¹³C^{α} couples to all three neighbouring nuclei, ¹³C', ²H^{α} and ¹⁵N, and in this case the signal is almost completely resolved and shows 11 of the expected 12 resonances. From this spectrum all of the three coupling constants involved can be derived easily: ¹J_{CC} 53, ¹J_{CD} 20 and ¹J_{CN} 12 Hz. A small shift to a higher field, -0.2 to -0.5 for the ¹³C^{α} atom also seems to accompany deuteriation. Incomplete deuteriation in **4a–c** can be detected by the

Fig. 3 40.4 MHz ¹⁵N NMR spectrum of 4d in CDCl₃

appearance of two signals in the ¹H NMR spectrum at $\delta \sim 4.1-4.6$ (for 4d at higher field), $\Delta \delta \sim 0.2$ ppm, for the *E* (major) and *Z* (minor) conformers.⁶ Otherwise, the ¹H spectra exhibit clean windows in the region mentioned. On the other hand, we have not yet been able to detect any effect of α -deuteriation in the ¹⁵N NMR spectra of the new compounds, except for small shifts to higher field, $\Delta \delta -1.5$ for both conformers of 4d and $\Delta \delta -1.1$ (*E*) and -0.7 (*Z*) for 4b. The typical spectrum of 4d is shown in Fig. 3. The two nitrogen signals appear as a doublet of doublets with ¹J_{NH} 92 and ¹J_{NC} 14 Hz for the major *E* conformer and ¹J_{NH} 92 and ¹J_{NC} 12 Hz for the minor *Z* conformer.

This research is part of a programme supported by the Swedish Natural Science Research Council. Y. E. was a recipient of an institutional fellowship from the Human Capital and Mobility Programme (EU) and he gratefully acknowledges a leave of absence from the Department of Chemistry, University of Ioannina, Greece. We further thank Dr B. Fransson for HPLC and GC analyses and Dr L. Grehn for assistance and advice.

References

- (a) F. Degerbeck, B. Fransson, L. Grehn and U. Ragnarsson, J. Chem. Soc., Perkin Trans. 1, 1992, 245 and 1993, 11; (b) L. Lankiewicz, B. Nyasse, B. Fransson, L. Grehn and U. Ragnarsson, J. Chem. Soc., Perkin Trans. 1, 1994, 2503; (c) Y. Elemes and U. Ragnarsson, J. Chem. Soc., Perkin Trans. 1, 1996, 537.
- 2 B. Nyasse, L. Grehn and U. Ragnarsson, J. Chem. Soc., Chem. Commun., 1994, 2005.
- 3 W. Oppolzer, R. Moretti and S. Thomi, *Tetrahedron Lett.*, 1989, 30, 6009.
- 4 (a) S. Einarsson, B. Josefsson, P. Möller and D. Sanchez, Anal. Chem., 1987, **59**, 1191; (b) H. Frank, G. J. Nicholson and E. Bayer, *J. Chromatogr. Sci.*, 1977, **15**, 174.
- 5 L. Grehn, T. Pehk and U. Ragnarsson, *Acta Chem. Scand.*, 1993, **47**, 1107.
- 6 M. Branik and H. Kessler, Tetrahedron, 1974, 30, 781.

Received, 28th December 1995; Com.5/08397D