Facile synthesis of azulenols: [6 + 4] cycloadditions of fulveneketene acetal
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In contrast to the Diels—-Alder reaction of fulvenes and
pyrones, fulveneketene acetal reacts with a-pyrone to give
the [6 + 4] cycloaddition adduct, an efficient and novel
route to the azulenols.

The [6 + 4] cycloaddition! of dienes to fulvenes has proved to
be an efficient synthesis of the azulenes.2 However, the [6 + 4]
cycloaddition of heterofulvenes using a fulveneketene acetal
moiety as a 6 Tt component has never been realized. During the
course of our studies on the chemistry of fulvenes, a novel
example of the dichotomous periselectivity of fulvene was
discovered. This type of high-order cycloaddition constitutes an
efficient synthesis of azulenols. In general, the Diels—Alder
reactions of electron deficient dienes such as «-pyrone 1 with
alkylfulvenes 2 favour addition across one of the endocyclic
double bonds of 2 to yield the [4 + 2] adduct 3, Scheme 1.3 In
contrast, electron rich dienes react with 2 to afford the [6 + 4]
cycloadducts 4.4 Additionally, the transition state for the [6 + 4]
cycloaddition is favoured over the [4 + 2] when electron rich
fulvenes and electron deficient dienes are employed. For
example, 6-dimethylaminofulvene 5 with 3,4-dichlorothio-
phene dioxide 6 at ambient temperature to give azulene 7 in
60% yield.> This striking difference in periselectivity between 5
and alkylfulvenes 2 may be attributed to an increase in the
electron density of the 6-dimethylaminofulvene m system.
Moreover, 5§ adds to a-pyrones in a [6 + 4] manner to give
azulenes in relatively low yields.® According to FMO theory,
electron donating substituents with large coefficients at the C-6
position of fulvene sufficiently elevate the energy of its next
highest occupied molecular orbital (NHOMO) and promote [6 +
4] cycloadditions to electron deficient 4 m systems.” We
suspected that the yield in this high order cycloaddition could be
enhanced by further increasing the electron density on the C-6
position of fulvene. To this end, we prepared and reacted
2-cyclopentadienylidene-1,3-dioxolane 8 with «-pyrone 1,
Scheme 2.8

A benzene solution of fulveneketene acetal 8 and «-pyrone 1
was heated at reflux for 72 h in the dark. The [6 + 4] cycloadduct
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9 was isolated as a purple oil in 54% yield after purification by
flash chromatography. The purple colour of 9 is characteristic of
azulenic compounds. Adduct 9 arises from the addition of «-
pyrone across C-1 and C-6 of the fulvene ring followed by
cheleotropic extrusion of CO,. The structure of 9 was
established based on !H, 13C NMR, COSY and DEPT
experiments and mass spectral data.f Our assignment was
unequivocally confirmed when 9 was transformed quantita-
tively into the previously known 4-ethoxyazulene 10 (KOH,
EtOH, reflux, 8-10 h).?

This method provides direct access to stable analogues of
4-hydroxyazulenes.10 In fact, no decomposition of adduct 9 was
observed after 4 months at 25 °C in the dark. The tether on
azulenol 9 may be easily functionalized or elongated to provide
various useful azulene analogues.i Scheme 3 depicts another
application of this methodology to the synthesis of azulene 11.
When a benzene solution of fulveneketene acetal 8 and «-
pyrone 12§ was heated at reflux for 4 d in the dark, the [6 + 4]
cycloadduct 11 was isolated as a dark-green solid in 40% yield.
A solution of 11 in EtOAc or acetone turns deep blue (red
shift).

Thus, the [6 + 4] cycloaddition of «-pyrone to electron rich
fulveneketene acetal 8 provides an efficient route to the
synthesis of azulenols. This method establishes the experi-
mental framework for a conceptually new approach to such
systems.
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Footnotes

1 All new compounds gave satisfactory spectral and analytical data.
Selected spectral data for azulenol 9: 'H NMR (CDCls, 200 MHz): 6 8.30
(d,J 9.0 Hz, 1 H), 7.67 (t,J 3.8 Hz, 1 H), 7.47-7.63 (m, 2 H), 7.31 (dd, J
3.7,1.7Hz, 1 H),7.02 (d,J 9.6 Hz, 1 H), 6.92 (d, J 11.4 Hz, 1 H), 4.43 (t,
J 4.5 Hz, 2 H), 4.03-4.20 (m, 2 H) and 2.18 (t, J 6.4 Hz, 1 H); '13C NMR
(CDCls, 50 MHz): & 161.90 (C), 139.30 (C), 137.59 (CH), 135.84 (CH),
132.93 (CH), 127.64 (C), 118.91 (two CH), 114.03 (CH), 108.51 (CH),
70.57 (CHy) and 61.52 (CH,). For 10: 'H NMR (CDCl3, 200 MHz): & 8.28
(d, J 9.4 Hz, | H), 7.44-7.70 (m, 3 H), 7.28 (dd, J 3.7, 1.9 Hz, 1 H),
6.84-7.04 (m, 2 H), 4.39 (q, J 6.9 Hz, 2 H) and 1.58 (t, J 6.8 Hz, 3 H); 13C
NMR (CDCls, 50 MHz): 8 162.44 (C), 139.14 (C), 137.53 (CH), 135.87
(CH), 132.44 (CH), 127.75 (C), 118.61 (CH), 118.42 (CH), 114.28 (CH),
108.27 (CH), 64.75 (CH,), 14.99 (CH3). For 11: 'H NMR ([2Hg]acetone,
200 MHz): & 10.78 (br s, 1 H), 8.37 (d, J 7.8 Hz, 1 H), 7.83 (s, 1 H),
7.42~7.67 (m, 5 H), 7.26 (t,J 7.5 Hz, 1 H), 4.57 (t,J 49 Hz, 2 H), 4.20-4.33
(m, 1 H), 4.04-4.18 (m, 2 H) and 3.20 (s, 3 H); 13C NMR ([2Hg)acetone, 50
MHz): § 156.55 (C), 140.11 (C), 137.18 (C), 135.22 (C), 133.11 (C), 130.35
(CH), 130.24 (CH), 128.04 (C), 12791 (CH), 126.78 (C), 124.96 (C),
121.21 (CH), 119.97 (CH), 114.87 (CH), 112.04 (CH), 98.06 (CH), 71.67
(CHy), 61.68 (CH;) and 19.05 (CHj3).

T Azulene derivatives have been widely used in pharmaceuticals, cosmetics,
photosensitizers, liquid crystals and electric conductors.

§ Purchased from Aldrich Chemical Co.
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