Second-order nonlinearities and crystal structures of methylsulfonyl- and phenylsulfonyl-substituted thiophene imino dyes

Shang-Shing P. Chou,*a Der- Jen Sun,a Hong-Cheu Linb and Pao-Keng Yangc

^aDepartment of Chemistry, Fu Jen Catholic University, Taipei, Taiwan 242, Republic of China

^hInstitute of Chemistry, Academia Sinica, Taipei, Taiwan 115, Republic of China

Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China

A simple synthesis of sulfone-substituted thiophene imino dyes 5 and **6** and their **UV-VIS** absorptions, second-order nonlinear optical properties, X-ray crystal structures and thermal stabilities are described.

Organic materials have been demonstrated in recent years to possess many superior second-order nonlinear (NLO) properties as compared to inorganic materials.¹⁻⁴ The NLO materials have great potential for use in optical communications, information processing, frequency doubling and integrated optics.^{3,4} Recently, both molecular orbital calculations⁵ and experimental studies⁶ have revealed that molecular hyperpolarizabilities $(\mu \beta)$ of thiophene-containing conjugated moieties are greater than benzene analogues. However, to achieve the required noncentrosymmetric order has been a major obstacle because the majority of organic compounds crystallize in centrosymmetric space groups.² Here we report the synthesis and NLO properties of two new thiophene imino dyes **5** and **6** containing sulfonyl acceptors. Although the sulfonyl group is not as strong an electron-withdrawing group as the nitro, di- or tri-cyanoethenyl group, it is synthetically more flexible and has greater transparency in the visible spectrum.7

The synthesis of imino dyes **5** and **6** is shown in Scheme 1. Oxidation of **5-(methylsulfanyl)thiophene-2-carboxaldehyde 1** (Maybridge) with MCPBA gave the corresponding methylsulfone **2.** The phenylsulfone **4** was prepared from **3** by a literature method.8 Condensation of compounds **2** and **4** with

Scheme 1 Reagents and conditions: i, MCPBA, CH₂Cl₂, 0-25 °C, 2 h; ii, PhSO₂Na, DMF, 130 °C, 3 h; iii, 4-N,N-dimethylaminoaniline, 4 Å molecular sieve, CH₂Cl₂, 25 °C, 2 h

4-N,N-dimethylaminoaniline gave the imino dyes **5** and **6** respectively in good yields.[†]

The UV-VIS absorptions of the imino dyes **5** and **6** were measured in different solvents‡ and the results reveal that the phenylsulfone **6** has lower charge-transfer energy and higher solvatochromic effect than the methylsulfone **5.** However, both these compounds show a large blue shift compared to the nitrosubstituted thiophene imino dye **7:** 72 nm for *5* and **63** nm for **6** in CH_2Cl_2 . The greater transparency of 5 and 6 should make them more suitable for generating blue-green laser lights by the frequency-doubling technique.

The molecular hyperpolarizabilities $(\mu \beta)$ of the imino dyes 5 and **6** were measured using the electric-field-induced second harmonic generation (EFISH)⁹ technique at 1064 nm. Dioxane was used as the solvent, and the $\mu\beta$ values were calibrated against a reference solution of p-nitroaniline (PNA). The $\mu\beta$ of PNA was taken as 120×10^{-48} esu with crystalline quartz as the reference.¹⁰ The zero-frequency hyperpolarizability $(\mu \beta_0)$ was calculated using a two-level model.¹¹ The Kurtz powder method was used to determine the averaged second harmonic generation (SHG) intensity using urea and α -quartz as the reference.¹² Large single crystals of 5 and 6 were grown from a solution of ethanol and hexane by slow evaporation, and powders ($75-150 \mu m$) for SHG measurements were obtained by grinding these crystals. The results of EFISH and Kurtz powder test are listed in Table 1.

The $\mu\beta$ values of 5 and 6 are 3.0 and 3.8 times that of PNA, whereas the $\mu\beta_0$ are 1.9 and 2.3 times that of PNA, respectively.

Fig. 1 Packing drawing of compound **6** (space group *P2,lc)*

Table 1 UV-VIS, melting point, decomposition temperature, $\mu\beta$ values, $\mu\beta_0$ values and powder SHG intensity for PNA and compound 5-8

Compound	λ_{max} nm	$T_{\rm m}$ / °C	$T_{\mathcal{A}}$ $^{\circ}C$	$\mu\beta/$ 10^{-48} esu	$\mu \beta_0$ / 10^{-48} esu	SHG intensity $[I(2\omega)_{sample}/I(2\omega)_{area}]$
PNA	352 ^a	146		$120^{a,b}$	60	$-$
	422^a	174	295	$361^{a.b}$	113	13
o	429a	210	286	458a.b	135	5×10^{-3}
7c	503 ^d		$-$	$807^{d,e}$	431	$\overline{}$
8 ^c	458f			500%	241	$1 - 3h$

a Measured in dioxane. *b* Measured with a fundamental wavelength of 1064 nm. *c* Ref. 13. *d* Measured in methylene chloride. *c* Measured with a fundamental wavelength of 1579 nm. f Measured in Me₂SO. *8* Measured with a fundamental wavelength of 1356 nm. *h* Ref. 14.

Fig. 2 Packing drawing of compound *5* (space group *P21)*

This shows that the imino dyes **5** and **6** have reasonably high hyperpolarizabilities and that the phenylsulfonyl group in **6** has a larger effect than the methylsulfonyl group in *5.* In consistence with the UV-VIS data, the $\mu\beta$ and $\mu\beta_0$ values of 5 and 6 are slightly lower than those of the nitrothiophene compound **7** and nitrobenzene compound **8.13** The SHG intensity of methylsulfone 5 is 13 times higher than that of urea, and $4-13$ times higher than nitrobenzene **8 (1-3** times of urea).14 The averaged SHG intensity of phenylsulfone 6 is only 5×10^{-3} that of urea. Thus, the SHG intensity ratio of $5:6$ is 2.6 \times 103.

To explain the above unexpected SHG results, the single crystal X-ray structures of **5** and **6** were obtained (Figs. 1 and *2).* Both compounds have the *E* configuration about the C-N bond. The phenylsulfone **6** has a centrosymmetric alignment with *P21/c* space group (four molecules per unit cell), whereas the methylsulfone 5 is noncentrosymmetric with a $P2_1$ space group.§ The substantial structural difference caused by the two sulfone groups of the imino dyes **5** and **6** has led to completely different crystal alignments and second-order nonlinearities. Apparently the much larger phenylsulfonyl group in **6** makes a head-to-tail arrangement of the molecule impossible. We can now obtain $15 \times 4 \times 1$ mm single crystals of 5 from a solution of ethanol and hexane by slow evaporation.

The melting points (T_m) of 5 and 6 are 174 and 210 °C, respectively as measured by differential scanning calorimetry (DSC) at a heating rate of 10° C min⁻¹. The decomposition temperatures (T_d) of 5 and 6 are 295 and 286 °C, respectively as determined by thermogravimetric analysis (TGA) at a heating rate of 10° C min⁻¹. It is interesting to note that the phenylsulfonyl-substituted thiophene imino dye 6 has lower T_d than the methylsulfone derivative *5.* High melting and decomposition temperatures of organic crystals are very important for NLO applications.²

Financial support of this work by the National Science Council of the Republic of China is gratefully acknowledged (NSC 84-21 13-M-030-003). We also thank Professor Jung Y. Huang for helpful discussion, and Mr J. W. Yu, F. H. Yen and W. Chao for experimental assistance.

Footnotes

t All new compounds gave satisfactory spectral and analytical data. $\frac{1}{4} \lambda_{\text{max}}$ /nm for 5: 431 (Me₂SO), 431 (CH₂Cl₂) 428 (DMF), 425 (MeOH), 422 (dioxane), 415 (hexane). For 6: 446 (Me₂SO), 440 (CH₂Cl₂), 439 (DMF),

433 (MeOH), 429 (dioxane) and 420 (hexane).

§ *Crystal data* for 5: $C_{14}H_{16}N_2O_2S_2$, $M = 308.4$, monoclinic, space group $P2_1$, $a = 6.012(3)$, $b = 30.644(9)$, $c = 8.163(4)$ Å, $\beta = 95.93(4)$ °, $V =$ $1495.6(11)$ Å³, Z = 4, D_c = 1.370 g cm⁻³, θ 2θ scan type $14.50 ≤ 2θ ≤$ 27.56°, $F(000) = 649$, $\mu = 3.428$ cm⁻¹, $T = 298$ K, crystal size = 0.30 \times 0.30×0.30 mm. Of 2867 measured data 2678 were unique and 1875 were observed $[I > 2.0\sigma(I)]$. The structure was solved by direct methods and refined to give $R = 0.045$ and $R_w = 0.049$. For 6: C₁₉H₁₈N₂O₂S₂, *M* = 370.48, monoclinic, space group $P2_1/c$, $a = 20.038(7)$, $b = 6.1450(20)$, *c* $= 14.773(4)$ Å, $\beta = 99.25(3)^\circ$, $V = 1795.4(10)$ Å³, $Z = 4$, $D_c = 1.371$ g cm⁻³, θ -2 θ scan type 15.68 $\leq 2\theta \leq 24.10^{\circ}$, $F(000) = 777$, $\mu = 2.977$ cm⁻¹, *T* = 298 K, crystal size = $0.20 \times 0.40 \times 0.70$ mm. Of 3144 measured data 3144 were unique and 1304 were observed $[I > 2.0\sigma(I)]$. The structure was solved by direct methods and refined to give $R = 0.047$ and $R_w = 0.046$. Atomic coordinates, thermal parameters and bond lengths have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, *Chemical Communications,* 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/22.

References

- 1 D. J. Williams, *Angew. Chem., Int. Ed. Engl.,* 1984, **23,** 690.
- 2 D. **S.** Chemla and J. **Zyss,** *Nonlinear Optical Properties of Organic Molecules and Crystals,* Academic Press, Orlando, USA, 1987, vol. 1 and 2.
- 3 P. N. Prasad and D. J. Williams, *Introduction to Nonlinear Optical Effects in Molecules and Polymers,* Wiley, New York, 1991.
- 4 **S.** R. Marder, J. **E.** Sohn and G. D. Stucky, *Materials for Nonlinear Opticals: ACS Symposium series 455,* ACS, Washington, D.C., USA, 1991.
- 5 **J.** 0. Morley, *J. Chem. Soc., Furaday Trans. 2,* 1991,87,3009.
- 6 G. Mignani, F. Leising, R. Meyrueix and H. Samson, *Tetrahedron Lett.,* 1990,31,4743; L. T. Cheng, W. Tam, S. R. Marder, **A.** E. Stiegman, G. Rikken and C. W. Spangler, *J. Phys. Chem.,* 1991,95, 10643; A. K-Y. Jen, V. P. Rao, K. Y. Wong and K. J. Drost, *J. Chem. SOC., Chem. Commun.,* 1993, 90; V. P. Rao, A. K-Y. Jen, K. Y. Wong and K. J. Drost, *Tetrahedron Lett.,* 1993, **34,** 1747; K. J. Drost, A. K-J. Jen and V. P. Rao, *Chemtech.,* 1995, **25,** 16 and references cited therein.
- 7 A. Ulman, C. **S.** Willand, W. Kohler, D. S. Robello, D. J. Williams and L. Handley, *J. Am. Chem. SOC.,* 1990, 112, 7083.
- 8 R. Kada, V. Knoppova, J. Kovac and M. Balag, *Collect. Czech. Chem. Commun.,* 1980,45, 2360.
- 9 J. L. Oudar, *J. Chem. Phys.,* 1977, 67, 446.
- 10 C. C. Teng and **A.** F. Garito, *Phys. Rev. B,* 1983,28,6766; M. **S.** Paley and J. M. Harris, *J. Org. Chem.,* 1989, 54, 3774.
- 11 J. L. Oudar and D. **S.** Chemla, *J. Chem. Phys.,* 1977,66,2664.
- 12 *S.* K. Kurtz and **T.** T. Perry, *J. Appl. Phys.,* 1968,39,3789.
- 13 H. Kuhn and J. Robillard, *Nonlinear Optical Materials,* CRC Press Inc., Florida, USA, 1992, p. 203; P. V. Kolinsky, *Opt. Eng.,* 1992, **31,** 1676.
- 14 K. D. Singer, J. E. Sohn, L. A. King, H. **M.** Gordon, H. E. Katz and C. W. Dirk, *J. Opt. SOC. Am. B,* 1989,6, 1339; *G.* Khanarian, *Nonlinear Optical Properties of Organic Materials III,* SPIE, 1990, vol. 1337, p. 272.

Received, I9 January 1996; Corn. 6f00457A