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Enantioselective [2+2] cycloaddition of (trimethylsily1)- 
ketene to aldehydes catalysed by methylalumino- 
imidazolines gives 3-(trimethylsilyl)oxetan-2-ones 
with up to 83% ee. 

The [2+2] cycloaddition of a ketene to a carbonyl compound 
was first reported in 191 1.1 As a general synthetic route to 
oxetanones,2,3 the method is limited by the instability of 
ketenes. However, in 1975 Zaitseva and co-workers4 showed 
that (trimethylsily1)ketene 2, a readily available and stable 
ketene,5 underwent [2+2] cycloaddition to achiral aldehydes in 
the presence of BFyOEt, (Scheme 1). The modest cis- 
selectivity observed by Zaitseva was later improved by using 
aluminium-based Lewis acids.6 Good diastereoselection is not 
restricted to trivial substrates: the [2+2] cycloaddition of 
hexyl(trimethylsily1)ketene 6 with the enantiomerically 
pure (3-silyloxyaldehyde 5 in the presence of EtAlC12 gave 
good yields, good 1,3-asymmetric induction and cis-stereo- 
selectivity7.8. High levels of 1,2- and 1,3-asymrnetric induction 
have also been observed recently in substrate-controlled 
cycloadditions of the simpler (trimethylsily1)ketene catalysed 
by aluminium9 and magnesium Lewis acids'o. 

We now report the first catalytic, enantioselective [2+2] 
cycloadditions of achiral aldehydes 10a-e with (trimethyl- 
sily1)ketene 2 using enantiomerically pure methylalumino- 
imidazolines 9a-d prepared from the appropriate bis-sulfona- 
mides 8a-d (Scheme 2 and Table 1). The reactions were 
performed according to the following general procedure: 

To a solution of the bis-sulfonamide 8 (0.15 mmol, 30 mol%) 
in dry toluene (4 ml), under nitrogen at room temperature was 
added trimethylaluminium (0.15 mmol) and the complex stirred 
at room temperature for 10 min. After cooling the catalyst to 
-80 "C, the aldehyde (0.5 mmol) in toluene (1 ml) was added. 
After 5 min (trimethylsily1)ketene (0.55 mmol) in toluene (1 ml) 
was added dropwise. The reaction was stirred at -80°C 
initially and then warmed gradually to -30°C until complete 
consumption of the aldehyde as indicated by TLC, when it was 
quenched with water (1 ml). Standard aqueous workup followed 
by column chromatography (Si02, ether-hexanes) gave the 
pure cis-oxetanone 11 and recovered bis-sulfonamide ligand 
(up to 95% recovery). 
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From Table 1 it can be seen that the cycloadditions occur in 
moderate to good yields with the cis-adducts 11 being formed 
preferentially in every case. Enantiomeric excesses range from 
3 0 4 3 %  the most favourable substrates being aryl acet- 
aldehydes 1Oc and 10e (entries 4, 8 and 12). Even the sterically 
non-hindered dodecanal 10b was transformed to a-silyl- 
oxetanone l l b  in up to 48% ee (entries 7 and 15). Reaction 
times range from a few minutes up to 3 h and are heavily 
dependent on the nature of the catalyst but less so on the 
aldehyde. In many cases, the reactions progress with around 30 
mol% of the catalyst. With the bis-trifluoromethylsulfonamide, 
20 mol% of catalyst was sufficient but the enantioselectivity 
was poor. With less than 20 mol% catalyst the reaction did not 
go to completion. 

The absolute configuration of the a-silyloxetanones l la -e  
was ascertained by desilyation with tetrabutylammonium 
fluoride in THF at -90 "C (90% yield) followed by hydrolysis 
with sodium hydroxide in methanol. The optical rotation of the 
resultant (3-hydroxy acids was compared with authentic samples 
prepared by asymmetric reduction of the corresponding (3-keto 
esters. 1 7 2 
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The bis-sulfonamide ligands 8a-d are easily synthesised in 
90% yield from the enantiomerically pure 1,2-diphenylethane- 
1,2-diamine and the appropriate sulfonyl chlorides (NEt3 and 
catalytic DMAP in dichloromethane). 13 ortho Substituents were 
essential for high enantio-induction but para substitution was 
also highly significant for some substrates (entries 1 and 4). The 
steric limits of the system are exceeded with bis-2,4,6-tri-iso- 
propylbenzenesulfonamide which is completely unreactive 
even with 100 mol% catalyst. However, non-C2-symmetric 
catalysts such as 9c and 9d with a single tri-iso-propylbenzene- 
sulfonamide substituent gave selectivities that equalled or 
surpassed those obtained with the C2-symmetric variants 
(entries 9-16). 

Table 1 Asymmetric [2+2] cycloaddition of (trimethylsily1)ketene to 
aldehydes 

Catalyst 9 Aldehyde Products Yield ee 
Entry (equiv.) 10 (11 : 12)a (%)b (%)c 

1 a (0.44) 
2 a (0.61) 
3 a (0.98) 
4 b (0.50) 
5 b (0.30) 
6 b (0.33) 
7 b (0.29) 
8 b (0.30) 
9 c (0.29) 

10 c (0.25) 
11 c (0.51) 
12 d (0.30) 
13 d (0.29) 
14 d (0.33) 
15 d (0.30) 
16 d (0.29) 
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a cis: trans ratios determined by 1H NMR analysis of the crude reaction 
mixture. Yields refer to isolated and purified cycloadducts. ee determined 
by HPLC (Daicel Chiralpak AD; 2% isopropyl alcohol-hexane; 1.0 
ml min-1; 210 nm) unless otherwise stated. d ee determined by *H NMR 
analysis of the CHSiMe3 doublet in the presence of 2 equiv. of 
(R)-( -)-2,2,2-trifluoro- 1 -(9-anthryl)ethan01.~~ 
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The absolute stereochemistry of the cycloaddition can be 
rationalised in terms of the transition state shown in Scheme 3 
which assumes a concerted but asynchronous reaction path 
involving a synperiplanar approach of a nucleophilic ketene to 
an electrophilic aldehyde coordinated to the Lewis acid. This 
synperiplanar approach (near coplanarity of the four partici- 
pating atoms) and prior formation of the C-C bond are in accord 
with recent ab initio14.15 and semi-empirical16 calculations. 

In conclusion we have accomplished the first catalytic 
asymmetric synthesis of 3-(trimethylsilyl)oxetan-2-ones via 
[2+2] cycloaddition of a silylketene with an aldehyde which, in 
effect, corresponds to an asymmetric aldol reaction. The 
stability of silylketenes offers distinct advantages in [2+2] 
cycloadditions compared with ketene itself.l7-'9 Furthermore, 
we have extended the range of asymmetric reactions catalysed 
by bis-sulfonamide substituted metalloimidazolines which 
include the Diels-Alder cycloaddition,l3 aldol reactions,l3 
allylmetallations,20 nucleophilic additions of alkylzincs to 
aldehydes21 and cyclopropanation.22 
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