Solid (dibenzo-18-crown-6)KC₆₀: significant enhanced air-stability and appearance of a strong ¹³C NMR signal of C_{60} ⁻ below 200 K with an **unexpected negative chemical shift**

Jian Chen,^{a,b} Fui-Fang Cai,^a Qian-Fen Shao,^c Zu-En Huang*a and Shi-Ming Chen^c

^aDepartment of Chemistry, Fudan University, Shanghai 200433, PR China

Laboratory of Organometallic Chemistiy, Shnghai Institute of Organic Chemistry, Chinese Academy of Sciences,

Shanghai 200032, PR China

Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, PR China

Two novel properties, which arise primarily from intermolecular interactions between two aryl rings of the crown ether and neighbouring C_{60} , are found in solid (dibenzo-18-crown-6)KC₆₀, *viz.* significantly enhanced **air-stability and appearance of a strong l3C NMR signal of** C_{60} ⁻ below 200 K with an unexpectedly negative chemical **shift.**

Recent interest in controlling the electronic properties of alkalimetal [60]fullerides $(A_nC₆₀)$ *via* chemical approaches has been growing rapidly.¹ It was reported that coordination of $NH₃$ to an A+ ion has a remarkable effect on the superconductivity of A_3C_{60} .¹ We recently discovered that solvating the K⁺ ion by thf in K(thf)_xC₆₀ solid (0 < *x* < 1) can dramatically change the electronic state of C₆₀⁻.² In this communication, we report the first example that both air-stability and solid-state physical properties of alkali-metal [60]fulleride salts can be altered dramatically and simultaneously by employing simple supramolecular chemistry.

(Dibenzo-18-crown-6) KC_{60} 1[†] was prepared according to our previous method: $3-6$ under argon, a combination of potassium (16 mg, 0.41 mmol), C_{60} (>99.5%, 295 mg, 0.41 mmol), dibenzo-18-crown-6 (148 mg, 0.41 mmol) and 1-methylnaphthalene (0.5 ml) was stirred in 60 ml thf for *ca.* 2 h. After centrifugation, the black microcrystalline product was obtained by layering hexane over the dark red-purple solution. The solid was washed with benzene and hexane and dried *in vacuo* to produce 1 in 87% yield. Anal: Calc. for $C_{80}H_{24}O_6K$ 1: C, 85.79; H, 2.14. Found: C, 85.01; H, 2.23%.

Table 1 Room-temperature 13C NMR data of 1 and related compounds

a Ref. 17. *b* This work. *c* Overlap with thf. *d* Difficult to detect due to chemical shift anisotropy.

A broad EPR signal ($g = 1.9997$, $\Delta H = 40.0$ G) is observed in solid 1 at 300 K. In addition, a minor, sharp signal $(g =$ 2.0005, $\Delta H = 3.5$ G) is superimposed on the broad signal and is estimated to be < *5%* of overall signal intensity. According to previous studies on Na+(crown) and K+(thf) salts of C_{60} ⁻,^{2,7} the broad and sharp signals in **1** can be assigned to the **2E** and 2A states of C_{60} ⁻ respectively.

Compound **1** is identified unambiguously by 13C NMR spectroscopy (Table 1, Figs. 1 and 2). A single peak at δ 188 at 295 K is characteristic of C_{60} species^{2–4,6,8,9} and no C_{60} (δ) 143) or C_{60}^{2-} (δ 183,⁴ 184¹⁰) signals were detected [Figs. $\tilde{1}(c)$, $2(a)$], indicating that disproportionation reactions such as $2C_{60}$ ⁻ \rightarrow C₆₀ + C₆₀²⁻ did not occur. It is particularly intriguing that there are marked down-field shifts for C3/C6 $(\Delta \delta)$ 37.5 ppm) and C4/C5 $(\Delta \delta 33.4$ ppm) of the crown ether aryl rings in solid **1** compared with its solution (Table 1). On the basis of the usual conformation of A^+ (dibenzo-18-crown-6),¹¹ we propose that the extraordinary large down-field shifts in C3/C6 and C4/C5 originate from intermolecular van der Waals interactions between two aryl rings of crown ether and the neighbouring paramagnetic C_{60} -. Such intermolecular interactions, which might be similar in some aspects to those found in $[(\eta^2 - \eta^2)]$ C_{60})Ir(CO)Cl{PhCH₂OC₆H₄CH₂PPh₂}₂] and [(3,4-dimethoxyphenyl)phenylmethano][60]fullerene,^{12,13} are supposed to be the key structural factors responsible for the novel properties of solid **1** as described below. The relatively narrower linewidths of the 13C NMR signals for C1/C2 [compared to C3/C6 and C4/C5, Fig. $1(a)$, (b)], combined with little change in shift (relative to solution), suggests that no substantial

van der Waals contacts exist between C1/C2 of the crown ether aryl rings and neighbouring C_{60} ⁻ in solid 1.

In sharp contrast to solid $K(thf)C_{60}$, which begins to decompose within a few minutes upon exposure to dry air, solid **1** is stable in dry air for at least **1** h as demonstrated by both EPR and 13C NMR measurements. The enhanced air-stability of solid **1** can be attributed mainly to intermolecular interactions between the two aryl rings of the crown ether and the neighbouring C_{60} , which blocks attachment of O_2 . As expected from ¹³C NMR solution data (Table 1), which indicate that no such intermolecular contacts occur in solution, a THF solution of **1** is very air-sensitive. Our findings imply that

Fig. 1 75 MHz NMR spectrum of 1 at 295 **K** at a spinning frequency of 3.5 kHz: *(a)* 13C MAS, *(b)* 13C CPMAS; * indicates spinning sideband; (c) the expanded ¹³C MAS NMR region of C_{60} ⁻ of 1 at 295 K

Fig. 2 75 MHz static variable-temperature 13C NMR spectra of 1 at *(a)* 295 and *(b)* 190 **K**

supramolecular chemistry can be introduced as a promising strategy to improve air-stability of alkali-metal [6O]fulleride salts.

The variable-temperature 13C NMR spectra of solid **1** provide clear evidence for **a** phase transition at *ca.* 200 K. Unlike any known ¹³C NMR spectra of other C_{60} -based materials, $2-6,8-10,14$ the low-temperature phase $(< 200 \text{ K})$ of solid 1 gives rise to a strong, broad 13 C signal with an extremely unusual negative chemical shift. At 190 K, a chemical shift δ of -182 is observed (linewidth 123 ppm) (Fig. 2). Extensive 13 C NMR investigations of solid **1** under various thermal cycling conditions15 and careful blank tests have shown that this abnormal ¹³C resonance is an intrinsic property of C_{60} ⁻ in solid 1 and not an artefact brought about by any possible impurities. Owing to intermolecular interactions between the two aryl rings of the crown ether and neighbouring C_{60}^- , the C_{60}^- molecules in solid 1 are more orientationally ordered and magnetically correlated than those in $K(thf)C_{60}$ at low temperature, as demonstrated by variable-temperature (295-200 K) ¹³C NMR and EPR spectroscopy.I5J6 Although the exact details remain unclear at present, this unexpected phase transition might be associated with the magnetic ordering of spins on C_{60} - molecules below 200 K. Further studies aimed at understanding the unusual origin of this puzzling phase transition are under way.

Footnote

'F Reed *et al.* have synthesized and characterized an analogous compound [Na(dibenzo-18-crown-6)(thf)₂+][C₆₀-]·thf.⁷ They mentioned that the air stability of the sodium crown ether salt is lower than that of $[Co(\eta C_5H_5)_2$ [C_{60} ⁻]; the thf solution of the latter is stable for several minutes upon exposure to air. However neither details of air-stability nor *13C* NMR spectral measurements were reported for this sodium crown-ether salt, particularly in the solid state.

References

- 1 **M.** J. Rosseinsky, *J. Mazer. Chern.,* 1995, 5, 1497 and references therein.
- 2 J. Chen, Q.-F. Shao, Z.-E. Huang, R.-F. Cai and S.-M. Chen, *Chern. Phys. Lett.,* 1995, 235, 570.
- 3 J. Chen, Z.-E. Huang, R.-F. Cai, Q.-F. Shao, S.-M. Chen and H.-J. Ye, *J. Chem.* Soc., *Chern. Cornrnun.,* 1994, 2177.
- 4 J. Chen, Z.-E. Huang, R.-F. Cai, Q.-F. Shao and H. J. Ye, *Solid State Cornmun.,* 1995, 95, 233.
- 5 **J.** Chen, R.-F. Cai, Z.-E. Huang, H.-M. Wu, **S.-K.** Jiang and Q.-F. Shao, *J. Chern.* Soc., *Chern. Commun.,* 1995, 1553.
- **6** J. Chen, R.-F. Cai, Z.-E. Huang, Q.-F. Shao and S.-M. Chen, *Solid State Comrnun.,* 1995, 95, 239.
- 7 J. Stinchcombe, A. Penicaud, P. Bhyrappa, P. D. W. Boyd and C. A. Reed, *J. Am. Chem.* Soc., 1993,115, 5212.
- 8 R. E. Douthwaite, **A.** R. Brough and M. L. H. Green, *J. Chern.* Soc., *Chern. Comrnun.,* 1994, 267.
- 9 J. Chen, Q.-F. Shao, R.-F. Cai and 2.-E. Huang, *Solid State Comrnun.,* 1995, 96, 199.
- 10 P. D. W. Boyd, P. Bhyrappa, P. Paul, **J.** Stinchombe, R. D. Bolskar, Y. Sun and C. **A.** Reed, *J. Am. Chem.* Soc., 1995,117,2907.
- 11 D. Bright and M. R. Truter, *J. Chem. Soc. B,* 1970, 1544.
- 12 **A. L.** Balch, V. J. Catalano, J. W. Lee and M. M. Olmstead, *J. Am. Chern.* Soc., 1992,114, 5455.
- 13 J. Osterodt, **M.** Nieger and **F.** Vogtle, *J. Chem.* Soc., *Chern. Cornmun.,* 1994, 1607.
- 14 For a review see, R. Tycko, *J. Phys. Chern. Solids,* 1993, 54, 1714.
- 15 Q.-F. Shao, J. Chen, R.-F. Cai, Z.-E. Huang and S.-M. Chen, manuscript in preparation.
- 16 J. Chen, R.-F. Cai, Q.-F. Shao, Z.-E. Huang and S.-M. Chen, manuscript in preparation.
- 17 **K.** Torizuka and T. Sato, *Ovg. Magn. Reson.,* 1979, **12,** 190.

Received, 18th January 1996; Corn. 6100429F