Homogeneous *versus* **heterogeneous electron-transfer processes in solution: a 'fifty percent rule' for volumes of activation**

Yansong Fu and Thomas W. Swaddle*

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Ac voltammetry at pressures up to 200 MPa shows that volumes of activation for heterogeneous electron transfer in three aqueous couples $\{[Fe(CN)_6]^{3-/4-}, [Co(sep)]^{3+/2+}$ and $[Co(en)_3]^{3+/2+}$ are numerically about 50% of those for **homogeneous (bimolecular) electron transfer in these same couples, with the same algebraic sign, as predicted by an extension of Marcus theory.**

Marcus¹ has proposed that the free energy ΔG_{el}^* of activation for electron transfer in a couple $ML_n(z+1)+/z+$ at an electrode should be approximately one-half that (ΔG_{ex}^*) for homogeneous (bimolecular) electron transfer in the same couple in solution,[†] if an adiabatic outer-sphere mechanism is operative $[eqn. (1)]$

$$
\Delta G_{\rm el}^* \approx \frac{1}{2} \Delta G_{\rm ex}^* \tag{1}
$$

Since free energies of activation ΔG_i^* are measurable (indeed, have meaning) only in terms of the corresponding rate constants k_i [eqn. (2)],

$$
k_i = Z_i \exp\left(-\triangle G_i^* /RT\right) \tag{2}
$$

the expectation[†] is that

$$
k_{\rm el}/Z_{\rm el} \approx (k_{\rm ex}/Z_{\rm ex})^{\frac{1}{2}} \tag{3}
$$

Unfortunately, the pre-exponential factors Z_{el} and Z_{ex} are not clearly definable, \ddagger and indeed have different dimensions $($ traditionally, cm s⁻¹ and dm³ mol⁻¹ s⁻¹, respectively), so that eqns. (1) and (3) are difficult to test experimentally.² If, however, Z_{el} and Z_{ex} are assumed to be independent of (or vary in the same way with) pressure *P* to within experimental uncertainty, then Marcus' prediction may be tested through the experimental *volumes* of activation ΔV_i^{\dagger} [= $-RT(\partial \ln k_i/\partial P)_T$], since eqn. (3) then implies that:

$$
\Delta V_{\rm el}{}^{\ddagger} \approx \frac{1}{2} \Delta V_{\rm ex}{}^{\ddagger} \tag{4}
$$

with consistency of dimensions. For homogeneous electrontransfer reactions,³ the pressure dependence of Z_{ex} is small, contributing only *ca.* $+1$ cm³ mol⁻¹ to ΔV_{ex} [‡], and it may be confidently expected that the pressure effect on Z_{el} will be no greater than this.

We report here successful tests of eqn. (4) for three aqueous outer-sphere self-exchange couples for which ΔV_{ex} [‡] is respectively strongly positive $\{[Fe(\tilde{CN})_6]^{3-/4-}\}$,⁴ strongly negative ${ [[Co(en)_3]^{3+/2+} }$,⁵ and mildly negative ${ [[Co(sep)]^{3+/2+} }$.⁶§ In principle, it is possible to obtain ΔV_{el} [‡] values from the pressure dependences of peak-peak separations (δE_p) in dc cyclic voltammograms (CV) for quasi-reversible redox couples.7 In practice, however, δE_p is too poorly reproducible and shows too small a pressure dependence, particularly for couples close to reversibility.4.8 We have therefore used ac voltammetry (ACV) to measure k_{el} as a function of pressure to 200 MPa--this appears to be the first high-pressure application of ACV. The high-pressure electrochemical cell described previously8 was reconstructed with a Pt wire working electrode and a longer counter electrode of Au wire (both 0.5 mm diameter, and cleaned with $H_2SO_4-H_2SO_5$ followed by sonication in water), and a reference electrode (AgCl-coated Ag wire in 4 mol dm^{-3} KCl) in a tube with electrical connection to the test solution

through a Vycor frit mounted in a free piston.⁹ Solutions were deoxygenated with N_2 before the cell was closed. The system was left for 45 min after each change of pressure to reequilibrate to the thermostated jacket temperature (25.0 \pm 0.05 °C).

At each pressure, the working electrode was thoroughly cleaned by potential cycling at least three times to the H_2 evolution point. This is the key to successful ACV measurements at high pressure, as it removes trace contaminants and provides a reproducible electrode surface after each pressurization. A normal CV was also recorded at 50 mV s^{-1} to obtain the half-wave potential E_z , and the uncompensated resistance R_u was determined at 8 kHz and a potential at least 300 mV more positive than $E_{\frac{1}{2}}$.¹⁰ ACVs were then collected at three frequencies f with a 7 mV ac voltage amplitude superimposed onto a dc voltage ramp swept at 5 mV s^{-1} , using EG&G PARC

Fig. 1 Ac voltammograms at $f = 100$ Hz for $[Co(en)_3]Cl_3(2.0 \text{ mmol dm}^{-3})$ with excess en $(0.2 \text{ mol dm}^{-3})$ in aqueous KCl $(0.5 \text{ mol dm}^{-3})$ on a Pt electrode relative to AgCl/Ag in 4.0 **mol** dm-3 KCl, at two pressures and 25.0 "C. Solid curves: in-phase current. Broken lines: 90" out-of-phase current.

Chem. Commun., **1996 1171**

equipment (Model 173 Potentiostat, Model 124A Lock-in-Amplifer with a built-in Model 117 Differential Preamplifier, Model 174 Universal Programmer, and Model RE0074 **X-Y** Recorder). The maximum in-phase and 90° out-of-phase faradaic currents were obtained from the total peak currents after correction for R_u and the double-layer capacitance, and the phase angle ϕ was used to obtain k_{el} from the standard eqn. **(5):10.11**

$$
[\cot \phi]_{\text{max}} = 1 + (2D_{\Omega} \beta D_{\text{R}}^{\alpha} \omega)^{\frac{1}{2}} / (\alpha^{-\alpha} \beta^{-\beta} k_{\text{el}})
$$
 (5)

Here, $\omega = 2\pi f$, D_{Ω} and D_{Ω} are the diffusion coefficients for the oxidized and reduced species (from CV measurements, assuming $D_O = D_R$), and α and β (= 1 - α) are the transfer coefficients for the reduction and oxidation processes, respectively. It was found, from the ACV peak potential E_{dc} , that $\alpha =$ $\beta = 0.50 \pm 0.02$ for $[Fe(CN)_6]^{3-4-}$ and $[Co(sep)]^{3+2+}$

$$
E_{\rm dc} = E_{\rm b} + (RT/nF) \ln \left(\alpha / \beta \right) \tag{6}
$$

while $\alpha = 0.44 \pm 0.02$ for $[Co(en)_3]^{3+/2+}$. Typical ACV results are shown in Fig. 1, in which a pressure-induced increase in the out-of-phase current relative to the in-phase current, and hence also in *kel,* is obvious and readily quantifiable. Plots of In *kel vs. p* were linear within the experimental uncertainty, and so the ΔV_{el} [‡] values given in Table 1 are effectively independent of pressure over the range 0.1-200 MPa.

Comparison of ΔV_{el} [‡] values with ΔV_{ex} [‡] data previously obtained⁴⁻⁶ (Table 1) leads to the following conclusions. *(a)* Eqn. (4) is valid, within the experimental uncertainty, regardless of the sign and magnitude of $\Delta V_{\text{ex}}^{\dagger}$; in short, $\Delta V_{\text{el}}^{\dagger}$ is about 50% of ΔV_{ex} [‡]. (b) By extension of (a), the Marcus relationship between k_{el} and k_{ex} [eqn. (3)] is verified.† *(c)* Although the experimental $|\Delta V_{ex}^{\dagger}|$ values for $[Fe(CN)_6]^{3-4-}$ (with K⁺

Table 1 Rate constants and volumes of activation for electron transfer at a Pt electrode at 25.0 *"C*

Couple	[KCl]/ mol $dm-3$	k_{el} (0.1 MPa) / $cm s^{-1}$	$\Delta V_{\rm el}$ [‡] / $cm3$ mol ⁻¹	$\Delta V_{\rm ev}$ ⁺ / cm^3 mol ⁻¹
$[Fe(CN)6]^{3-/4-}$	0.5	0.068	11.6 ± 1.8	21.8 ± 1.7
	0.2	0.043a	9.6 ± 2.0	
$[Co(sep)]^{3+/2+}$	0.5	0.099	-2.7 ± 1.3	-6.4 ± 0.2
$[Co(en)_3]^{3+/2+}$	0.5 ^b	0.033	-8.6 ± 0.1	-15.5 ± 1.0 b.c

a cf. [K⁺] dependence of k_{el} and k_{ex} noted in refs. 4 and 12. *b* Excess en present to suppress dissociation of $[Co(en)_3]^{2+}$. **c** Mean value, 0.1-200 MPa at 65° C in 0.5 mol dm⁻³ NaClO₄.

counter ion) and $[Co(en)_3]^{3+/2+}$ couples are anomalously large in terms of an extension of the Marcus-Hush theory of k_{ex} ³ eqn. (4) is clearly applicable to experimental ΔV_{ex} [‡] and ΔV_{el} [‡] values of outer-sphere electron transfer processes regardless of theoretical anomalies. (d) Measurements of ΔV_{el}^{\dagger} can provide estimates of $\triangle V_{ex}$ [‡] with acceptable accuracy when $\triangle V_{ex}$ [‡] is not directly measurable-e.g. for fast exchanges in which paramagnetism of both partners precludes NMR measurements of *kex-*

We thank Drs **A. S.** Hinman and V. **I.** Birss for much helpful advice, and the Natural Sciences and Engineering Research Council of Canada for financial assistance.

Footnotes

 \dagger It is assumed there that the M^{(z+1)+}-M^{z+} separation in the homogeneous electron transfers is twice the average distance from the M centres to the electrode surface in the corresponding electrode reaction. If, for example, a layer of adsorbed solvent on the electrode intervenes, then $k_{el}/Z_{el} < (k_{ex}/\sqrt{q})$ Z_{ex} ^{$\frac{1}{2}$} (ref. 1), but the success of eqn. (4) vindicates the assumption and implies that this is not the case.

 \ddagger Marcus' ΔG_{ex}^* is not necessarily identical with ΔG_{ex}^* , the Eyring free energy of activation obtained by replacing Z_{ex} with $k_bT\kappa/h$, where κ is the transmission coefficient.

 $\text{\$ en } = 1,2$ -diaminoethane; sep = sepulchrate = 1,3,6,8,10,13,16,19**octaazabicyclo[6.6.6]eicosane.**

References

- 1 R. **A.** Marcus, *Electrochim. Acta,* 1968,13, 995; R. **A.** Marcus and N. Sutin, *Biochim. Biophys. Acta,* 1985, 811, 265.
- 2 R. D. Cannon, *Electron Transfer Reactions,* Butterworths, London, 1980.
- 3 T. W. Swaddle,Inorg. *Chem.,* 1990,29,5017; J. *Mol. Liq.,* 1995,65164, 237; *Can.* J. *Chem.,* in the press.
- 4 H. Takagi and **T.** W. Swaddle, *Inorg. Chem.,* 1992,31,4669.
- *5* W. H. Jolley, D. R. Stranks and T. W. Swaddle, *Inorg. Chem.,* 1990,29, 385.
- 6 H. Doine and T. W. Swaddle, *Inorg. Chem.,* 1991,30, 1858.
- 7 R. **S.** Nicholson, *Anal. Chem.,* 1965, 37, 1351.
- 8 H. Doine, T. W. Whitcombe and T. W. Swaddle, *Can.* J. *Chem.,* 1992, 70, 81.
- 9 J. **I.** Sachinidis, R. D. Shalders and P. **A.** Tregloan, J. *Elecrroanal. Chem.,* 1992,327, 219.
- 10 D. E. Smith, in *Electroanalytical Chemistry,* ed. **A.** Bard, Marcel Dekker, New York, 1966, vol. 1, p. 1.
- 11 **A.** J. Bard and L. R. Faulkner, *Electrochemical Methods,* Wiley, New York, 1980, pp. 333-340.
- 12 **S. A.** Campbell and **L.** M. Peter, *J. Electroanal. Chem.,* 1994, 364, *257.*

Received, 23rd *January I996; Corn. 6100542J*