Poly[2]-catenanes containing alternating topological and covalent bonds

Jean-Luc Weidmann,^a Jean-Marc Kern,^a Jean-Pierre Sauvage,^a Yves Geerts,^b Dirk Muscat^b and Klaus Müllen^b

^a Laboratoire de Chimie Organo-Minérale, UA 422 au CNRS, Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67000 Strasbourg, France

A poly[2]-catenane containing interlocking 45-membered rings is synthesized; the polymer backbone includes alternating topological links and covalent bonds.

Macromolecular systems containing interlocking rings (catenanes) and rotaxane-like elements are of special interest.^{1,2} In particular, introduction of topological bonds in the main chain of the polymer has been considered as a synthetic challenge for decades. In addition, large catenanes contain elements of mobility which make such macromolecules particularly attractive from the viewpoint of their potential rheological and mechanical properties. Poly[2]-catenanes represent the prototypical example of such architectures.

We now report that a difunctionalized catenane, made of large and rigid macrocycles (45-membered rings, incorporating aromatic units), has been synthesized and copolymerized with a rigid spacer, to afford the desired macromolecular architecture. The polymer structure (1) thus obtained contains alternating topological links (interlocking rings) and covalent bonds.

The monomer precursors were prepared following a three-dimensional templated strategy developed in the Strasbourg group for several years.³ Large rings were used in order to ensure pronounced mobility of the demetallated system (2:M absent) and solubilizing groups were introduced so as to counterbalance the expected effect of 1,10-phenanthroline and biphenyl nuclei.

The intermediate compounds made and the final monomers [copper(I) catenate 8 or catenand 10] are depicted in Fig. 1.

Compound 3 was obtained from 5-carbomethoxyresorcinol and the monochloro derivative of triethyleneglycol (NaH in dmf), followed by mesylate formation and treatment with NaI. Compound 4 was prepared by reacting 4-lithio-4'-triisopropylsilyloxybiphenyl with 4,7-di-n-hexyl-1,10-phenanthroline, followed by hydrolysis and MnO₂ reoxidation, similarly to a literature procedure.⁴ The silyl groups were cleaved off using NBu₄F. The macrocyclic compound 6 was synthesized by

reacting 3 and 5 under high-dilution conditions in the presence of Cs₂CO₃ (60 °C, dmf, 53% yield). Compound 5 was threaded through 6 using [Cu(MeCN)₄]PF₆ as template and the pseudorotaxane intermediate formed was cyclized (55% yield) using 3 and Cs₂CO₃ in a procedure similar to the preparation of 6. The copper(1) catenate 7 obtained bears two ester functions which were reduced by Hdibal to afford 8 (64% yield from 7). Demetallation of 7 (KCN in CH₂Cl₂–MeCN–H₂O) led to 9 in 68% yield. The corresponding dibenzylic alcohol 10 was obtained in 73% yield, using the same conditions as for the reduction of 7. Typically, 8 and 10 were prepared at the 0.2 gram scale. Their analytical data (¹H and ¹³C NMR and FAB MS) were in accordance with their structure.

The polycondensation reactions were carried out between diacid 11 and the diols 8 or 10, affording poly[2]-catenate 1 or poly[2]-catenand 2, respectively. A direct polyesterification method was applied,⁵ in dichloromethane using N,N'-diisopropylcarbodiimide as a reagent and 4-(N,N'-dimethylamino)pyridine toluene-p-sulfonic acid 1:1 complex as catalysts. Polymerisation was carried out for 3 d at $-10\,^{\circ}$ C, then 2 d at $0\,^{\circ}$ C and finally 1 d at room temperature. The polymers were soluble in chlorinated solvents and thf, and purified by precipitation in a non-solvent (diethyl ether for the poly[2]-catenate 1 and methanol for the poly[2]-catenand 2). Gel permeation chromatography (GPC) in chloroform (calibration with polystyrene standards), indicated that high-molecular-mass poly[2]-catenate and poly[2]-catenand were obtained (Fig. 2).

Number-average molecular mass (M_n) and mass-average molecular mass (M_w) values were: 6.0×10^5 and 4.2×10^6 for poly[2]-catenate; 5.5×10^4 and 1.8×10^6 for poly[2]-catenand. ¹H and ¹³C NMR spectroscopy confirmed the presence of linear high-molecular mass polymers. In the ¹H NMR spectra, all peaks were broadened compared to the corresponding monomers, as expected for polymers. Typical resonances of the spacer and of the interlocked macrocycles were present. No

^b Max-Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

Fig. 1 Chemical formulae of the molecules prepared in the present work

Fig. 2 Typical GPC curve for poly[2]-catenate 1 in CHCl₃

evidence of ring opening and dethreading during polymerisation was observed. New resonances appeared, namely benzyl ester protons at δ 5.25 and 5.17 for the poly[2]-catenate and for the poly[2]-catenand, respectively. 1H NMR end-group analysis revealed that no more benzylic alcohol protons (CH2OH) which appeared at δ 4.43 and 4.65 for the catenand and the catenate, respectively, were present in the corresponding polymer spectra. Accordingly, ^{13}C NMR spectra indicated that the characteristic resonance of the acid functions of the spacer at δ 163.8 was shifted to 165.0 and 164.9 (ester groups) for 1 and 2 respectively. The absence of end groups is in agreement with the high molecular masses observed by GPC. Thermogravimetric analysis showed that poly[2]-catenate 1 is stable up to 210 $^{\circ}C$, whereas poly[2]-catenand 2 exhibited an even higher thermal

stability of up to 300 °C. Second-order transitions, which are attributed to glass transitions, were observed by differential scanning calorimetry at ca. 60 and 75 °C for 1 and 2 respectively.

The production of poly[2]-catenanes on a larger scale, their full characterization by matrix assisted laser desorption mass spectrometry and membrane osmometry, as well as the study of their unusual mechanical and rheological properties are underway.

References

- H. W. Gibson, M. C. Bheda and P. T. Engen, Prog. Polym. Sci., 1994, 19, 843; H. W. Gibson, S. Liu, P. Lecavalier, C. Wu and Y. X. Shen, J. Am. Chem. Soc., 1995, 117, 852; Y. S. Lipatov, T. E. Lipatova and L. F. Kosyanchuk, Adv. Polym. Sci., 1989, 88, 49; T. J. Fyvie, H. L. Frisch, J. A. Semlyen, S. J. Clarson and J. E. Mark, J. Polym. Sci. A, 1987, 25, 2503; Topology in Molecular Chemistry, New J. Chem., 1993, 17 (No. 10, 11), special issue and references cited therein; Y. Geerts, D. Muscat and K. Müllen, Macromol. Chem. Phys., 1995, 196, 3425; G. Bidan, B. Divisia-Blohorn, M. Lapkowski, J.-M. Kern and J.-P. Sauvage, J. Am. Chem. Soc., 1992, 114, 5986.
- 2 For a recent and general discussion on catenanes, rotaxanes and knots, see: D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95, 2725.
- C. O. Dietrich-Buchecker, J.-P. Sauvage and J.-P. Kintzinger, *Tetrahedron Lett.*, 1983, 24, 5095; J.-P. Sauvage, *Acc. Chem. Res.*, 1990, 23, 319.
- 4 C. O. Dietrich-Buchecker and J.-P. Sauvage, *Tetrahedron*, 1990, 46, 503
- 5 J. S. Moore and S. I. Stupp, Macromolecules, 1990, 23, 65.

Received, 23rd February 1996; Com. 6/01326K