Hydrothermal synthesis and characterization of (NH₄)Ce(PO₄)₂·H₂O

Yaohua Xu, Shouhua Feng, Wenqin Pang and Guangsheng Pang

Key Laboratory of Inorganic Hydrothermal Synthesis, Department of Chemistry, Jilin University, Changchun 130023, P.R. China

A new monohydrated ammonium cerium phosphate $(NH_4)_2Ce(PO_4)_2 \cdot H_2O$ is hydrothermally synthesized from the system NH_3 -CeO₂-P₂O₅-H₂O and characterized by powder X-ray diffraction, differential thermal analysis-thermogravimetric analysis, elemental chemical analysis, IR, Raman and impedance spectroscopy.

Most solids that show proton conduction at room temperature are hydrates¹⁻³ in which the proton conductivity is limited to a restricted temperature range over which the water molecules are retained in the structure; such water molecules are usually lost in the range room temperature to 150 °C. Mixed proton and electronic conduction at high temperatures (200–1000 °C) is also found in some perovskite oxides such as SrCeO₃ in the presence of water vapour.^{4–8} With the aim to search for proton conductors, we are investigating cerium phosphates in the M₂O–CeO₂–P₂O₅–H₂O (M = NH₄, Na, K) systems and have found a new family of compounds, M₂Ce(PO₄)₂·H₂O (M = NH₄, Na, K), among which (NH₄)₂Ce(PO₄)₂·H₂O showed proton conduction in the temperature range 40–200 °C.

Hydrothermal crystallization of $(NH_4)_2Ce(PO_4)_2 \cdot H_2O$ was carried out in a stainless-steel autoclave with a Teflon liner under autogenous pressure. $NH_3 \cdot H_2O$ (26% solution), 85% H_3PO_4 and freshly prepared Ce(OH) $_4 \cdot xH_2O$ were mixed in the molar composition ratio 14NH₃: 3.5P₂O₅: CeO₂: 100H₂O. The autoclave was sealed and heated in an oven at 140 °C for 5–7 days and the crystalline products which formed were filtered, washed with distilled water, and dried at ambient temperature.

The crystalline products were identified by X-ray powder diffraction (XRD) on a Rigaku D/MAX-IIIA diffractometer using Cu-K α (λ = 1.5418 Å) radiation. The XRD data of $(NH_4)_2Ce(PO_4)_2 \cdot H_2O$, indexed as an orthorhombic system, are listed in Table 1, and the lattice parameters were optimized by least-squares refinements, resulting in refined values of a = $12.72(1), b = 14.00(4), c = 16.10(1) \text{ Å}, U = 2868 \text{ Å}^3$. The composition of the yellow powder product was analysed by chemical analyses for P and Ce and elemental analyses for N and H. The results showed that the products contain 38.2, 15.4, 6.2 and 2.3 mass% for Ce, P, N, and H, respectively, corresponding to a composition (NH₄)₂Ce(PO₄)₂·H₂O; water content was determined by differential thermal analysisthermogravimetric analysis (DTA-TGA). The IR spectrum, recorded on a Nicolet 5DX Model FT spectrometer, showed several medium-strong absorption bands in the region 400-700 cm^{-1} and strong absorption bands in the region 900-1200 cm⁻¹, attributed to PO₄ bending and stretching vibrations. In addition an absorption band at 1405 cm⁻¹ was ascribed to an NH_4^+ bending vibration, and a band at 1630 cm⁻¹, to a H_2O bending mode; a strong absorption band at 2400–3500 cm $^{-1}$, is a combination of NH₄⁺ and H₂O stretching vibrations.⁹ This indicated that the products contained water, as confirmed by DTA-TGA. The Raman spectrum, recorded with a T64000 double spectrometer (France) with an argon-ion laser (488.0 nm line, 200 MW), showed several weak absorption bands in the region 100–300 cm^{-1} attributed to crystal-lattice vibrations. Absorption bands at 400-700 and 900-1200 cm⁻¹ can be attributed to PO₄ bending and stretching vibrations, respectively,9 indicating only the presence of phosphate anion

 (PO_4^{3-}) in the compound. DTA-TGA showed that $(NH_4)_2$ Ce- $(PO_4)_2$ ·H₂O decomposed into P₂O₅, CePO₄ and O₂ at 800 °C. The reactions during thermal decomposition may be summarized by eqns. (1)–(5).

$$(\mathrm{NH}_4)_2\mathrm{Ce}(\mathrm{PO}_4)_2\cdot\mathrm{H}_2\mathrm{O} \rightarrow (\mathrm{NH}_4)_2\mathrm{Ce}(\mathrm{PO}_4)_2 + \mathrm{H}_2\mathrm{O} (120\,^\circ\mathrm{C})$$
(1)

$$(\mathrm{NH}_4)_2\mathrm{Ce}(\mathrm{PO}_4)_2 \longrightarrow \mathrm{NH}_4\mathrm{Ce}(\mathrm{HPO}_4)(\mathrm{PO}_4) + \mathrm{NH}_3 (210-300 \, ^\circ\mathrm{C})$$
(2)

$$NH_4Ce(HPO_4)(PO_4) \rightarrow Ce(HPO_4)_2 + NH_3 (300-360 \text{ °C})$$
(3)

$$Ce(HPO_4)_2 \rightarrow Ce_2P_4O_{13} + H_2O + O_2 (434 \,^{\circ}C)$$
 (4)

$$Ce_2P_4O_{13} \rightarrow CePO_4 + P_2O_5 (700-800 \,^{\circ}C)$$
 (5)

Impedance spectra, measured by the ac impedance technique using a ZL5 frequency analyser in the frequency range of 0.012–100 kHz, were characteristic of proton conductors with an interfacial impedance at lower frequencies, followed at higher frequency by a depressed semicircle, characteristic of the bulk electrical response. Intersection of the circle with the real axis indicated the bulk resistance. The proton conductivities of the compound were 2.35×10^{-6} S cm⁻¹ at 40 °C and 4.23 × 10^{-4} S cm⁻¹ at 200 °C, respectively. Comparison with other proton conductors such as (H₃O)Ze₂(PO₄)₃ ($\sigma_{200 \,^{\circ}C} < 10^{-5}$ cm⁻¹),⁵ Ce(HPO₄)₂·*n*H₂O which showed ionic conduction in humid air ($\sigma_{200 \,^{\circ}C} < 5 \times 10^{-5}$ S cm⁻¹)¹⁰ and H₃O+- β''/β -Al₂O₃ ($\sigma_{200 \,^{\circ}C} < 5 \times 10^{-5}$ S cm⁻¹),¹¹ showed that (NH₄)₂Ce-(PO₄)₂·H₂O had a higher proton conductivity despite the absence of retained water in the structure at medium tem-

Table 1 Powder X-ray diffraction data of (NH₄)Ce(PO₄)₂·H₂O

h	k	l	$d_{\rm obs}/{\rm \AA}$	$d_{ m calc}/{ m \AA}$	<i>I/I</i> ₀	
2	0	0	6.368	6.360	100	
0	3	1	4.460	4.482	13	
1	3	0	4.427	4.381	12	
3	0	0	4.249	4.240	16	
0	4	1	3.426	3.420	61	
0	1	5	3.136	3.138	55	
2	4	1	3.022	3.012	44	
3	3	3	2.708	2.709	16	
5	0	1	2.513	2.513	22	
3	5	1	2.312	2.312	8	
0	1	7	2.270	2.270	9	
1	1	7	2.236	2.234	4	
2	4	5	2.222	2.221	5	
1	6	2	2.207	2.207	5	
0	4	6	2.128	2.130	20	
1	6	3	2.110	2.110	16	
6	3	1	1.948	1.952	9	
5	2	5	1.920	1.920	15	
3	5	5	1.891	1.891	11	
6	4	0	1.814	1.813	5	
7	2	1	1.748	1.748	20	
5	3	6	1.717	1.717	9	
2	8	1	1.677	1.678	8	
5	2	7	1.659	1.658	11	
1	0	10	1.596	1.597	4	

perature ranges; this implies that NH_4^+ ions carry the charge in the transportation process.

In summary, a new proton conducting compound, $(NH_4)_2$ Ce- $(PO_4)_2$ ·H₂O was synthesized from the hydrothermal system NH₃-CeO₂-P₂O₅-H₂O. This polycrystalline compound which undergoes phase transformations above 210 °C, shows proton conductivities of *ca*. 10⁻⁶ to *ca*. 10⁻⁴ S cm⁻¹ in the temperature range 40–200 °C.

This work was supported by the NSFC through a National Outstanding Youth Science Foundation (S. F.) and Pang-Deng Plan in China.

References

1 J. B. Goodenough, *Solid State Microbatteries*, ed. J. R. Akridge and M. Balkanski, Plenum, New York, 1990, p. 195.

- 2 A. Potier and D. Rousselet, J. Chim. Phys., 1973, 70, 873.
- 3 M. G. Shilton and A. T. Howe, Mater. Res. Bull., 1977, 12, 701.
- 4 H. Uchida, N. Maeda and H. Iwahara, J. Appl. Electrochem., 1982, 12, 645.
- 5 A. Clearfield, B. D. Roberts and M. A. Subramanian, *Mater. Res. Bull.*, 1984, **19**, 219.
- 6 S. Feng and M. Greenblatt, Chem. Mater., 1993, 5, 1277.
- 7 S. Feng and M. Greenblatt, Chem. Mater., 1992, 4, 1257.
- 8 G. Alberti, M. Bracardi and M. Cascida, Solid State Ionics, 1982, 7, 243.
- 9 Y. Xu, S. Feng and W. Pang, J. Solid State Chem., 1995, 119, 197.
- 10 P. Barboux, R. Morineau and J. Livage, Solid State Ionics, 1988, 27, 221.
- 11 Chju Kun Kuo, Aichun Tan, Partho Sarkar and S. Nicholson, Solid State Ionics, 1990, 38, 251.

Received, 31st January 1996; Com. 6/00751A