Palladium-catalysed cycloaddition copolymerisation of diynes with elemental sulfur to poly(thiophene)s

Tetsuo Tsuda*a and Atsushi Takeda^b

^a Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan

^b Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan

Palladium acetate catalyses the cycloaddition copolymerisation of diynes with elemental sulfur to afford poly-(thiophene)s.

Recently we developed a transition metal-catalysed diyne cycloaddition copolymerisation as a new polymer synthesis and prepared various cycloaddition copolymers.¹ We thought that it would be interesting to exploit further this unique diyne cycloaddition copolymerisation. Here we report a new synthesis of poly(thiophene)² by the palladium-catalysed cycloaddition copolymerisation of a diyne with elemental sulfur S₈.

It is known that the cycloaddition of diphenylacetylene **1a** with S₈ occurs thermally at 200–210 °C in benzene to produce 2,3,4,5-tetraphenylthiophene **2a** [eqn. (1)].†^{.3} We have now found that palladium acetate catalyses this cycloaddition (Table 1). The palladium-catalysed reaction at 160 and 140 °C afforded **2a** in good yield while the corresponding thermal reaction gave **2a** only in low yield. This result is noteworthy because, to the best of our knowledge, the reported thiophene formation by a transition metal (Co⁴ and Rh⁵)-catalysed alkyne–S₈ cycloaddition is limited to activated alkynes such as dimethyl acetylenedicarboxylate.

Based on these results, the Pd(OAc)₂-catalysed cycloaddition copolymerization of 1,4-bis(4'-hexylphenylethynyl)benzene **3b** with S₈ was carried out, eqn. (2). Two hexyl groups were introduced to 1,4-bis(phenylethynyl)benzene **3a** to improve the solubility of poly(thiophene).‡ The copolymerisation results are summarized in Table 2. Poly(thiophene) **4b** was isolated from the reaction mixture by evaporating under vacuum, adding THF (*ca.* 3 ml), cooling to -78 °C to precipitate most of the unreacted S₈, centrifuging, evaporating under vacuum, dissolving a copolymer in a small amount of CH₂Cl₂, adding diethyl

ether (20 ml) to precipitate the copolymer, extracting contaminated S_8 with hot methanol,⁶ and drying *in vacuo*. A large excess of S_8 to **3b** such as S: 3b = 50 was necessary for effective copolymerisation. Compared to the thermal copolymerisation at 160 °C, where **4b** with a low molecular mass was produced only in 3% yield, catalysis by Pd(OAc)₂ was remarkable, affording **4b** with a molecular mass M_n (GPC) of 9800 in 32% yield. Prolonging the reaction time and decreasing the amount of solvent raised the copolymer yield and/or molecular mass. Compound **4b** was a dark brown powder and was soluble in CHCl₃, THF and toluene, but insoluble in methanol and diethyl ether.

Two control reactions confirmed **3b**–S₈ copolymerisation: (1) thermal and Pd(OAc)₂-catalysed homopolymerisations of **3b** without S₈ in toluene at 180 °C gave only the diyne oligomer **5**¹*c* with a low molecular mass, which was isolated by preparative layer chromatography (PLC) [AcOEt–hexane = 1/100 (ν/ν)] and was soluble in diethyl ether and hexane, and (2) heating S₈ without **3b** in toluene at 180 °C in the presence and absence of Pd(OAc)₂ did not produce any polymeric material⁷ detectable by GPC. For the formation of **4b**, other palladium complexes such as Pd(OAc)₂(PPh₃)₃ and PdCl₂(MeCN)₂ were

Table 1 Thermal and palladium-catalysed cycloaddition reactions of alkynes 1 with elemental sulfur S_8 to produce thiophenes 2 [eqn. (1)]^{*a*}

1	$Pd(OAc)_2: 1^b$	T/°C		Yield 2 (%) ^c	
а	0	180	а	89	
	0.2	160		71	
	0	160		14	
	0.2	140		64	
	0	140		3	
b	0.2	180	b	63	

^{*a*} 1, 0.5 mmol; S: 1 = 8; 2 ml toluene, 6 h. ^{*b*} A molar ratio. ^{*c*} Isolated yield by PLC based on the quantitative formation of **2**.

Table 2 Palladium-catalysed cycloaddition copolymerisation of diyne 3b with elemental sulfur S_8 to produce poly(thiophene) 4b [eqn. (2)]^{α}

		<i>T/</i> ⁰C	<i>t/</i> h	4b			
S:3b ^b	$Pd(OAc)_2$: 3b ^b			Yield (%) ^c	$M_{n^{d}}$	$M_{\rm w}/M_{\rm n}^{d}$	
50	0.2	180	20	35	14 000	1.8	
50	0	180	20	25	12000	1.6	
50	0.2	160	20	32	9800	1.5	
50	0.2	160	20	43e	12 300	1.5	
50	0	160	20	3	2600	1.3	
50	0.2	160	40	58	9400	1.7	
50	0.2	140	20	11	3800	1.7	
20	0.2	160	20	17	2700	1.3	
8	0.2	180	20	28	9800	1.6	
8	0.2	160	20	4	1900	1.3	

^{*a*} **3b**, 0.2 mmol; 4 ml toluene. ^{*b*} A molar ratio. ^{*c*} Based on the quantitative formation of **4b**. ^{*d*} Determined by GPC with polystyrene standards in CHCl₃. ^{*c*} 2 ml solvent.

Chem. Commun., 1996 1317

also effective, but $Pd_2(dba)_3(CHCl_3)$ (dba = dibenzylideneacetone) was less effective.

The structure of **4b** was supported by IR, ¹H NMR and ¹³C NMR spectroscopies. An IR absorption assignable to a thiophene ring appeared at 1488 cm⁻¹, which was not observed in the IR spectrum of the diyne oligomer **5**. The ¹H NMR spectrum of **4b** gave the most conclusive evidence of the poly(thiophene) structure: it showed five kinds of signals due to poly(thiophene) **4b** with reasonable peak areas.§ To confirm further the poly(thiophene) structure, model compound **2b** of a repeat unit of **4b** was prepared by the Pd(OAc)₂-catalysed reaction of (4-hexylphenyl)phenylacetylene **1b** and S₈ [eqn. (1), Table 1]. Partial agreement was observed between the ¹³C NMR signals of **4b** and **2b**. Compound **2b** consisted of three regioisomers and had a complex C=C region in the ¹³C NMR

Fig. 1 ¹³C NMR C=C and/or C=C signals of 2,3,4,5-tetraphenylthiophene 2a, 2,3,4,5-tetraarylthiophene 2b, poly(thiophene) 4b and diyne oligomer 5 (CDCl₃).

spectrum but the eight weak signals at δ 137.6–139.5 may be assigned to thiophene ring carbons. The corresponding signals of **4b** were observed at δ 137.0–140.5. Compound **4b** showed different ¹³C NMR signals from those of **5** and did not exhibit the C=C signals around δ 90. The ¹³C NMR data are summarized in Fig. 1. Signals due to a hexyl group of **4b** agreed with those of **2b**. All these spectral findings support the poly(thiophene) structure of **4b**.

Footnotes

[†] We examined the effect of solvent upon the thermal **1a**–S₈ cycloaddition, eqn.(1), (**1a**, 0.5 mmol; S: **1a** = 8; 2 ml solvent; 180 °C; 6 h). Yield (%) of **2a**: 68 (THF), 64 (benzene), 68 (toluene), 58 (MeCN) and 50 [1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone].

‡ A thermally-induced copolymerization of **3a** at 180 °C under the standard copolymerisation condition of Table 2 precipitated poly(thiophene) **4a** partly after the reaction was complete. Compound **4a** isolated $[M_n (GPC) = 5700]$ was less soluble compared to **4b**.

§ Spectroscopic data for 4b: IR v(film)/cm⁻¹ 3023, 1598, 1512, 1488, 1465, 1408, 1377, 1115, 1019, 907, 836 and 733; ¹H NMR (270 MHz, CDCl₃) δ 0.87 (br m, 6 H), 1.27 (br m, 12 H), 1.55 (br m, 4 H), 2.54 (br m, 4 H) and 6.60–7.20 (m, 12 H); ¹³C NMR (67.5 MHz, CDCl₃) δ 14.1, 22.6, 28.8, 28.95, 28.98, 29.1, 31.05, 31.14, 31.2, 31.3, 31.7, 35.6, 35.7, 127.6, 127.7, 127.8, 128.2, 128.8, 128.9, 130.6, 131.4, 133.1, 133.4, 133.6, 134.2–136.5 (m), 137.0–140.5 (m), 141.0 and 142.0.

References

1 For the diyne-carbon dioxide cycloaddition copolymerisation, see: (a) T. Tsuda, H. Yasukawa, H. Hokazono and Y. Kitaike, Macromolecules, 1995, 28, 1312 and (b) T. Tsuda and H. Hokazono and K. Toyota, J. Chem. Soc., Chem. Commun., 1995, 2417; for the diyne-isocyanate cycloaddition copolymerisation, see: (c) T. Tsuda and A. Tobisawa, Macromolecules, 1995, 28, 1360; for the diyne-nitrile cycloaddition copolymerisation, see: (d) T. Tsuda and H. Maehara, Macromolecules, in the press; for the diyne-alkene cycloaddition copolymerisation, see: (e) T. Tsuda, H. Mizuno, A. Takeda and A. Tobisawa, unpublished results; for the diyne-carbon monoxide cycloaddition terpolymerisation, see: (f) T. Tsuda and F. Tsugawa, Chem. Commun., in the press.

2 J. Roncali, Chem. Rev., 1992, 92, 711.

- 3 J. Nakayama, R. Yomoda and M. Hoshino, *Heterocycles*, 1987, 26, 2215.
- 4 H. Bönnemann, W. Brijoux, R. Brinkmann, M. Kajitani, G. Natarajan and H. Samson, 3rd ISHC, 1982, Milano, Italy.
- 5 M. Kajitani, T. Suetsugu, R. Wakabayashi, A. Igarashi, T. Akiyama and A. Sugimoti, J. Organomet. Chem., 1985, **293**, C15.
- 6 S. Penczek and A. Duda, Pure Appl. Chem., 1981, 53, 1679.
- 7 (a) W. J. MacKnight and A. V. Tobolsky, *Elemental Sulfur*, ed. F. Bovey, Interscience, New York, 1965, p. 95; (b) B. Meyer, *Inorganic Sulfur Chemistry*, ed. G. Nickless, Elsevier, New York, 1968, p. 241.

Received, 11th March 1996; Com. 6/01679K