Specific interaction of bare Pd²⁺ with highly basic sites in calcined PdNaX

A. Sauvage, M. Oberson de Souza, M.-J. Peltre, P. Massiani* and D. Barthomeuf

Laboratoire de Réactivité de Surface, URA CNRS 1106, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

The interaction of bare Pd^{2+} ions with framework oxygen in PdNaX calcined at 500 °C results in an unusual ²⁹Si MAS NMR band at δ –79.5; line intensities indicate that bare Pd²⁺ ions are located preferentially close to highly basic sites exhibiting the Al richest environments; the strong Pd²⁺-framework interaction is reversibly released upon hydration/dehydration.

The hydration state and nature of the cation in faujasites are known to influence the ²⁹Si MAS NMR chemical shifts.^{1–5} Most literature data deal with zeolite Y and few with zeolite X which has a richer Al content. Moreover, no ²⁹Si MAS NMR data are available in the presence of Pd²⁺ cations. The present ²⁹Si MAS NMR study of dehydrated PdNaX demonstrates for the first time that Pd²⁺ in NaX interacts preferentially with highly basic sites. This finding is of high interest since the preparation of metal-supported PdNaX catalysts most often involves a calcination step to favour dispersion.⁶ The nature of the interactions between the framework and metal cation after calcination have to be considered to optimize the catalyst.

Three Pd(NH₃)₄-NaX samples with different Pd contents were prepared by exchange of a parent NaX (Union Carbide) with a Pd(NH₃)₄Cl₂ solution as previously described.⁷ Table 1 gives the chemical composition (Pd, Na, Si and Al) of the parent and exchanged samples. The ²⁹Si MAS NMR spectra (reference SiMe₄) were recorded at 79.5 MHz on a Bruker MSL-400 spectrometer using a single pulse type measurement ($\pi/3$ pulses and 5 s delays). All spectra were identical and they exhibited the usual bands¹⁻⁵ assigned to Si(*n*Al) environments, with $0 \le n \le$ 4, as illustrated in Fig. 1(a) (NaX) and 1(c) (Pd_{6.4}NaX). The relative intensities of bands, estimated by fitting the curves with Gaussian lineshapes (Win NMR software) were 47, 31, 14, 5 and 3% for Si(4Al), Si(3Al), Si(2Al), Si(1Al) and Si(0Al) environments respectively. The framework Si/Al atomic ratio of 1.3 calculated from these intensities³ was identical to the global Si/Al ratio deduced from chemical analysis. This shows that no framework dealumination took place during exchange.

The parent and exchanged zeolites were calcined in a fixedbed reactor (100 ml min⁻¹ O₂, 1 °C min⁻¹) up to 500 °C. The preservation of their crystallinity was confirmed by XRD. After calcination at 500 °C under the above conditions palladium is

Table 1 Chemical composition of the samples and number [per unit cell (u.c.) and per Pd] of Si(4Al) atoms with chemical shift at δ –79.5 in the dehydrated calcined samples

	Chemical composition ^a		Si(4A1) from NMR band at δ -79.5	
Sample	Atoms/u.c.	Pd/u.c.	Si/u.c.	Si/Pd
NaX	Na83Al83Si109	0	0	
Pd _{1.5} NaX	Pd _{1.5} Na ₇₄ H _{8.0} Al ₈₅ Si ₁₀₇	1.5	4.3	2.9
Pd _{2.9} NaX	Pd _{2.9} Na ₇₆ H _{1.2} Al ₈₃ Si ₁₀₉	2.9	8.7	3.0
Pd _{6.4} NaX	$Pd_{6.4}Na_{63}H_{6.2}Al_{82}Si_{110}$	6.4	18.7	2.9

 a H/u.c. calculated difference between Al content and total equivalent cations.

known to be in the form of bare Pd^{2+} ions,⁷⁻¹³ interacting with framework oxygens and located mostly in I' sites in the sodalite cages.^{8,10,12,13} The calcined samples were transferred from the reactor into the NMR rotor in a dry atmosphere and the ²⁹Si MAS NMR spectra were recorded. Figs. 1(*b*) and (*d*) show the spectra thus obtained for samples NaX (Pd free) and Pd_{6,4}NaX (highest Pd content) respectively.

The ²⁹Si MAS NMR spectrum of calcined NaX [Fig. 1(*b*)] was similar to that of the hydrated parent sample [Fig. 1(*a*)] except for an upfield shift of all peaks by *ca*. 2 ppm and a broadening of the Si(4Al) band centred at δ *ca*. -86.6. This band moreover exhibits a shoulder at δ *ca*. -84.5. Such changes, also observed in the spectra of the calcined Pd-containing samples, may be attributed to Na⁺ ions in stronger interaction with the framework oxygen in the dehydrated state.¹⁻⁴ Apart from above effects, important modifications were observed for all calcined samples when Pd²⁺ was present and the trends were identical for all solids. The spectrum of calcined Pd_{6.4}NaX is given as an illustration [Fig. 1(*d*)].

The most important feature in the calcined Pd-containing samples was a decrease in intensity of the band at δ -86.6 related to Si(4Al) environments and the appearance of a new band at δ -79.5. The ²⁹Si CP-MAS NMR (cross-polarisation ¹H/²⁹Si experiment) spectrum of calcined Pd_{6.4}NaX [Fig. 1(g)] established that the new band at δ -79.5 does not result from the formation of Qⁱ species³ ($i \leq 3$) during calcination since this band is not significantly enlarged when cross polarisation is

Fig. 1 ²⁹Si MAS NMR spectra of samples (*a*) NaX, (*b*) NaX calcined at 500 °C, (*c*) Pd_{6.4}NaX and (*d*) Pd_{6.4}NaX calcined at 500 °C then (*e*) hydrated in room atmosphere for 3 h then (*f*) dehydrated at 150 °C *in vacuo* for 3 h; (*g*) ²⁹Si CP-MAS NMR spectrum of sample (*d*)

performed. Moreover the band at δ -79.5 disappeared after simple hydration under ambient atmosphere over at least 3 h [Fig. 1(*e*)] and was recovered after dehydration for 3 h in vacuum at 150 °C [Fig. 1(*f*)]. Furthermore, the relative intensity of this band (4, 8 and 17% for Pd_{1.5}NaX, Pd_{2.9}NaX and Pd_{6.4}NaX respectively) was always equal to the intensity loss of the band of the Si(4Al) at δ -86.6. The intensities of all other bands were constant in all experiments. The above data clearly indicate that the band at δ -79.5 results from Si(4Al) atoms with bare Pd²⁺ ions in their environment.

²⁹Si chemical shifts in the range δ -76 to -80 have already been reported for zeolitic materials containing sodalite cages and those values were correlated to average Si(-O-Al)₄ angles ranging from *ca*. 126 to 131°.^{3,14–16} However, a chemical shift of δ -79.5 is highly unusual for faujasites. Moreover, small average angles in the range indicated above are highly unlikely in this structure.¹⁷

The effect of alkali-metal or rare-earth cations on the ²⁹Si MAS NMR signals in dehydrated NaY is usually an upfield shift by ca. 2-5 ppm.^{1,3-5} However, downfield shifts were also found for strongly polarising cations such as Li+14,15 or Ca^{2+,2} In dehydrated CaNaY, this shift was found to be as high as 8.8 ppm.² It was then concluded that the deshielding effect of Ca²⁺ on the ²⁹Si is higher than that created by framework Al atoms and it was postulated that suitably located Ca2+ ions are able to distort the SiO₄ tetrahedra.² Structural distortions are also known to occur in Pd zeolites. In particular, short Pd-O distances were observed in zeolite X^{8,12} and it was proposed that the Pd-O bond is partially covalent.8 The strong deshielding effect found in the presence of bare Pd²⁺ suggests that the ²⁹Si chemical shift of δ –79.5 in PdNaX results not only from the distortions of tetrahedra in presence of bare Pd²⁺ but also from possible overlapping of atomic orbitals of Pd2+ and framework oxygens belonging to SiO₄ tetrahedra. The strong Pd-oxygen interaction is weakened when water is adsorbed as evidenced by the disappearance of the band at δ -79.5 in rehydrated samples [Fig. 1(e)].

The relative intensities of the ²⁹Si MAS NMR bands at δ -79.5 in the dehydrated calcined samples were used to evaluate the number of Si per unit cell affected by the presence of bare Pd²⁺ ions. Comparison of these values with the number of palladium ions per unit cell indicates that the number of Si affected is three times the number of Pd²⁺ ions in the solid (Table 1). In other words, one bare Pd²⁺ would affect three Si(4Al) atoms. Moreover, those Si(4Al) atoms are equally affected (same chemical shift) which points to a symmetrical location with regard to the Pd²⁺ ion. These observations strongly suggest that the Pd²⁺ ion interacts with oxygen atoms of a six-membered ring containing three Si and consequently three Al atoms as tetrahedra, Pd²⁺ being located on the C₆ axis of the ring. This fits well with the proposed location of bare Pd²⁺ mostly in I' sites^{8,10,12,13} and supports the hypothesis of a tetragonal $Pd^{2+}(O_{zeol})_3$ unsaturated complex being formed^{8,9} where O_{zeol} are the framework oxygens.

Owing to the lower electronegativity of Al compared to Si, the framework oxygens close to Al atoms are the more basic.^{18,19} An important conclusion of the present work is that Pd²⁺ ions are located in close proximity to Si(4Al) atoms which correspond to highly basic environments. In zeolite Y, such strongly basic sites are virtually absent^{18,19} and the cations are found to influence all the ²⁹Si MAS NMR component bands which results in poorly resolved spectra.^{1,2,4,5} By contrast, the Pd²⁺ effect is unambiguous in NaX since only one band is affected and is transformed to a single isolated band.

In conclusion, the present work clearly shows that bare Pd^{2+} ions in dehydrated NaX are located preferentially in strongly basic sites where they are stabilised. The strong interaction of Pd^{2+} with the framework is reversibly released upon hydration/dehydration cycles.

References

- M. T. Melchior, D. E. W. Vaughan, A. J. Jacobson and C. F. Pictroski, in *Proc. 6th Int. Zeolite Conf.*, ed. D. Olson and A. Bisio, Butterworths, Reno, USA, July 1983.
- 2 P. J. Grobet, W. J. Mortier and K. Van Genechten, *Chem. Phys. Lett.*, 1985, **119**, 361.
- 3 G. Engelhardt and D. Michel, *High Resolution Solid State NMR of Silicalites and Zeolites*, Wiley, Chichester, 1987.
- 4 K.-J. Chao and J.-Y. Chern, J. Phys. Chem., 1989, 93, 1401.
- 5 J. Thoret, P. P. Man and J. Fraissard, J. Chem. Soc., Faraday Trans., 1995, 91, 1037.
- 6 W. M. H. Sachtler and Z. Zhang, Adv. Catal., 1993, 39, 129.
- 7 A. Sauvage, P. Massiani, M. Briend, D. Barthomeuf and F. Bozon-Verduraz, J. Chem. Soc., Faraday Trans., 1995, 91, 3291.
- 8 P. Gallezot and B. Imelik, in *Molecular Sieves*, ed. W. M. Meier and J. B. Uytterhoeven, American Chemical Society, Washington DC, 1973, p. 66.
- 9 E. D. Garbowski, J. Chim. Phys., 1978, 75, 226.
- 10 G. Bergeret, P. Gallezot and B. Imelik, J. Phys. Chem., 1981, 85, 411.
- 11 S. T. Homeyer and W. M. H. Sachtler, J. Catal., 1989, 117, 91.
- 12 K. Möller, D. C. Koningsberger and T. Bein, J. Phys. Chem., 1989, 93, 6116.
- 13 Z. Zhang and W. M. H. Sachtler, Zeolites, 1990, 10, 784.
- 14 J. M. Newsam, J. Phys. Chem., 1987, 91, 1259.
- 15 S. Ramdas and J. Klinowski, Nature, 1984, 308, 521.
- 16 M. T. Weller and G. Wong, J. Chem. Soc., Chem. Commun., 1988, 16, 1103.
- 17 J. V. Smith, in *Molecular Sieve Zeolites-1*, ed. E. M. Flanigen and L. B. Sand, American Chemical Society, Washington DC, 1971, p. 171.
- 18 D. Barthomeuf, J. Phys. Chem., 1984, 88, 42.
- 19 D. Barthomeuf, Catal. Rev., 1996, in the press.

Received, 12th February 1996; Com. 6/00982D